Macrophages (MF) are essential for immunity against pathogens, tissue homeostasis and immune regulation. Helminth infections, allergic reactions and tissue injury can induce the differentiation of alternatively activated macrophages (AAMF), which are important in promoting tissue remodeling, wound repair, T helper 2 (TH2) differentiation and parasite clearance. The differentiation process and cellular precursors of AAMF remains poorly understood. Recently, two functionally distinct subsets of monocytes and their properties have been described;(1) Ly-6C+ """"""""inflammatory"""""""" monocytes and (2) Ly6C- """"""""resident"""""""" monocytes. While Ly6C- monocytes populate normal tissues, they have also been shown to patrol blood vessels and extravasate rapidly into inflamed or infected tissues to promote the resolution of inflammation. Ly6C- cells are also CX3CR1-GFPhi in a CX3CR1-GFP reporter mouse and have been best characterized in models of myocardial infarction and bacterial infection. In both models, extravasated Ly6C-, CX3CR1-GFPhi monocytes have characteristics of AAMF and can promote tissue remodeling, wound healing and immune modulation. We have previously shown that helminth infection potently induces recruitment of AAMF. Others have shown that the recruitment of AAMF is critical in protecting S. mansoni infected mice from acute immunopathology in response to the eggs. We have also recently shown that sterile tissue injury can induce recruitment of AAMF in the absence of infection, through a T cell independent innate immune pathway. We have now conducted preliminary flow cytometry, confocal microscopy and intra-vital imaging studies of the liver granulomas of S. mansoni infected CX3CR1-GFP/+ mice, which suggest that AAMF are CX3CR1-GFPhi and may arise from the Ly6C-, CX3CR1-GFPhi monocytes that are patrolling the sinusoidal vessels. In this proposal, we propose to use intra-vital microscopy to observe T cell-macrophage interactions in the liver granulomas of S. mansoni infected mice. Specifically, we propose to test the hypothesis that AAMF recruited by S. mansoni eggs differentiate from CX3CR1-GFPhi, Ly6C- monocytes. As a secondary hypothesis, we propose that CD4+ T cells may play a role in recruiting or maintaining CX3CR1-GFP+ cells into the granulomas to differentiate into AAMF during chronic infection. Therefore, our specific aims are: (1) to visualize the dynamics of monocyte recruitment and macrophage differentiation in liver granulomas using the CX3CR1- GFP reporter mice;(2) to determine the role of CD4+ TH2 cells in the recruitment of CX3CR1-GFPhi cells by S. mansoni eggs in the liver granulomas. These studies will improve our understanding of monocyte recruitment and macrophage differentiation under Th2 conditions and may provide us with a framework for new interventional therapies to regulate pathogenic inflammatory Th2 responses.

Public Health Relevance

Macrophages activated under T helper type 2 conditions are important in wound healing, allergic reactions and parasite infections. How these cells are recruited into the tissues from monocytes in the blood is not clear. The goal of this project is to identify where these macrophages come from in order to design interventional strategies that could help regulate the inflammatory process during a type 2 response.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI094166-01
Application #
8096081
Study Section
Immunity and Host Defense Study Section (IHD)
Program Officer
Wali, Tonu M
Project Start
2011-02-15
Project End
2013-01-31
Budget Start
2011-02-15
Budget End
2012-01-31
Support Year
1
Fiscal Year
2011
Total Cost
$253,500
Indirect Cost
Name
New York University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Gundra, Uma Mahesh; Girgis, Natasha M; Gonzalez, Michael A et al. (2017) Vitamin A mediates conversion of monocyte-derived macrophages into tissue-resident macrophages during alternative activation. Nat Immunol 18:642-653
Harris, Nicola L; Loke, P'ng (2017) Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection. Immunity 47:1024-1036
Rahman, Karishma; Vengrenyuk, Yuliya; Ramsey, Stephen A et al. (2017) Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest 127:2904-2915
Loke, P'ng; Niewold, Timothy B (2017) By CyTOF: Heterogeneity of Human Monocytes. Arterioscler Thromb Vasc Biol 37:1423-1424
Loke, P'ng; Lim, Yvonne A L (2015) Can Helminth Infection Reverse Microbial Dysbiosis? Trends Parasitol 31:534-535
Loke, P; Lim, Y A L (2015) Helminths and the microbiota: parts of the hygiene hypothesis. Parasite Immunol 37:314-23
Ouimet, Mireille; Ediriweera, Hasini N; Gundra, U Mahesh et al. (2015) MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest 125:4334-48
Tang, Mei San; Poles, Jordan; Leung, Jacqueline M et al. (2015) Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation. Gut Microbes 6:48-56
Lauvau, Grégoire; Loke, P'ng; Hohl, Tobias M (2015) Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol 27:397-409
Lee, Soo Ching; Tang, Mei San; Lim, Yvonne A L et al. (2014) Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis 8:e2880

Showing the most recent 10 out of 18 publications