The project described in this application addresses a mechanistic study aimed at understanding the mechanism of action of MHC class II accessory protein, HLA-DO and its role in generation of immunodominant epitopes. Immunodominance is a phenomenon that has long been recognized but yet remains unclear to date. It is well known that the immune system focuses on and responds to very few representative epitopes (referred to as immunodominant epitopes) from invading pathogenic insults ranging from such as infectious agents and, antigenic targets in autoimmune diseases, allergy, and cancer. In each all these cases, the immune system either responds positively or fails to respond to antigenic peptides in the context of MHC molecules. Recent advances in our understanding of the antigen presentation pathway have shown that the steps of antigen processing and selection critically influence the peptide repertoire presented to T-cells. Recently, we have made considerable progress in developing a reductionist antigen processing system for MHC class II molecules that utilizes five purified protein components of the class II antigen presentation pathway. Notably, this system yielded physiologically relevant immunodominant epitopes restricted to HLA-DR1. In this proposal, we will extend this MHC II system to include another MHC class II molecules HLA-DO and would explore its contribution to epitope capture and processing.
Aim 1 would explore mechanistic aspects of how HLA-DO interacts with MHC II and HLA-DM, leading to regulation of peptide binding, and in Aim 2 we would investigate contributions of HLA-DO to epitope capture and editing from full length protein antigens and immunodominance. A clear understanding of HLA-DO function and its role in antigen processing and the selection of immunodominant epitopes, can guide the design of effective immunotherapeutics.

Public Health Relevance

Development of effective vaccines and rational design of therapeutics for intervention in autoimmune diseases or cancer rely on good knowledge of key regions on a pathogen, or proteins from cancer cells or self that can be targeted by the immune system and are generally called antigenic epitopes. The immune system recognizes these epitopes and mounts specific responses through its cellular components, T cells and B cells. The specific cells become activated and fight the infection and then can retain the memory of the pathogen for future attacks (memory cells). Our study outlined in this application addresses understanding of the fundamental processes that regulate presentation of antigenic epitopes to the immune system. By knowing how different proteins involved in antigen processing can participate in this complex series of reactions, investigators can design biologics that are intelligently based and therefore can be highly effective while avoiding nonspecific side effects. Public Health

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI101987-01
Application #
8369154
Study Section
Cellular and Molecular Immunology - A Study Section (CMIA)
Program Officer
Rice, Jeffrey S
Project Start
2012-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
1
Fiscal Year
2012
Total Cost
$243,000
Indirect Cost
$93,000
Name
Johns Hopkins University
Department
Pediatrics
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Sadegh-Nasseri, Scheherazade; Kim, AeRyon (2018) Selection of immunodominant epitopes during antigen processing is hierarchical. Mol Immunol :
Darrah, Erika; Kim, AeRyon; Zhang, Xi et al. (2017) Proteolysis by Granzyme B Enhances Presentation of Autoantigenic Peptidylarginine Deiminase 4 Epitopes in Rheumatoid Arthritis. J Proteome Res 16:355-365
Kim, AeRyon; Sadegh-Nasseri, Scheherazade (2015) Determinants of immunodominance for CD4 T cells. Curr Opin Immunol 34:9-15
Sadegh-Nasseri, Scheherazade; Kim, AeRyon (2015) Exogenous antigens bind MHC class II first, and are processed by cathepsins later. Mol Immunol 68:81-4
Kim, AeRyon; Hartman, Isamu Z; Poore, Brad et al. (2014) Divergent paths for the selection of immunodominant epitopes from distinct antigenic sources. Nat Commun 5:5369
Poluektov, Yuri O; Kim, Aeryon; Hartman, Isamu Z et al. (2013) HLA-DO as the optimizer of epitope selection for MHC class II antigen presentation. PLoS One 8:e71228
Poluektov, Yuri O; Kim, Aeryon; Sadegh-Nasseri, Scheherazade (2013) HLA-DO and Its Role in MHC Class II Antigen Presentation. Front Immunol 4:260