. Maintenance of an intact intestinal barrier is critical to prevent microbial activation of mucosal immunity. ?? intraepithelial lymphocytes (IEL) migrate extensively within the epithelial compartment to serve as a first line of defense against luminal antigens and invasive enteric microbes. Although ?? IELs can induce epithelial proliferation, whether ?? IELs regulate cell shedding has yet to be investigated. Our preliminary data generated for this application demonstrate ?? IELs are required for pathological cell shedding in response to systemic lipopolysaccharide (LPS) exposure; however, the mechanisms regulating this process remain unclear. This proposal seeks to elucidate the role of ?? IEL migratory behavior in pathological cell shedding and begin to define the molecular mechanisms by which ?? IELs contribute to these shedding events. Specifically, we propose to investigate the spatiotemporal dynamics of ?? IEL interactions with LPS-induced shedding events, the role of ?? IEL motility in regulating shedding, and whether local ?? IEL secretion of granzyme into the extracellular matrix facilitates release of enterocytes from the basement membrane as a critical component of the shedding process. Using an integrated approach that combines cutting edge imaging technologies with cell biology and immunological techniques, these studies will be the first to identify a direct role for ?? IELs in the regulation of pathological cell shedding. These experiments will not only elucidate a novel functional role for ?? IELs in the intestinal mucosa, but also provide the basis to investigate the extent to which specific subsets of ?? IELs contribute to maintenance of the epithelial barrier as a potential area of therapeutic development to aid in mucosal healing.

Public Health Relevance

. The proposed research is relevant to public health because it will elucidate the fundamental biological processes by which the immune system regulates epithelial homeostasis under inflammatory conditions. This essential knowledge is required to understand the role of mucosal immunity in intestinal homeostasis and development of diseases such as inflammatory bowel disease. This work will therefore directly support the overall NIH mission of developing fundamental knowledge that will help reduce the burden of human disease and promote the NIDDK goal of improving digestive health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21AI143892-01
Application #
9713983
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Rothermel, Annette L
Project Start
2019-02-01
Project End
2021-01-31
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Rutgers University
Department
Pathology
Type
Schools of Medicine
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
07103