Disrupting the supportive effects of the multiple myeloma (MM) microenvironment is of major clinical significance since the interactions between MM cells and the microenvironment enhance tumor growth and bone destruction. Bone marrow stromal cells (BMSCs) are considered a key player in the microenvironmental support of MM cell growth and bone destruction. The X-box-binding protein 1 (XBP1) signaling is the most ancient Unfolded Protein Response signaling branch. Recently, we found that XBP1s was strongly induced in BMSCs from MM patients'compared with normal donors'BMSCs. Further, SIRT1 and Resveratrol, a pharmacological activator of SIRT1 and a bioactive dietary component of red wine, strongly inhibited the transcriptional activity of XBP1s. Therefore, we propose that MM cells induce XBP1s signaling in BMSCs. XBP1s signaling plays an important role in regulating BMSCs'support of MM cell growth and osteoclast (OCL) differentiation in MM bone diseases. Further, Resveratrol represses XBP1s signaling in BMSCs and markedly reduces the capacity of BMSCs to support MM cell growth and osteoclastogenesis. To test these hypotheses, we will 1) determine if modulating XBP1s signaling in human BMSCs impacts hBMSCs'support of MM cell growth and osteoclast differentiation via both gain-of-function and loss-of-function strategies, 2) elucidate the molecular mechanisms by which XBP1s protein levels are induced in BMSCs in MM bone disease, and 3) determine if Resveratrol represses XBP1s signaling in BMSCs and compromises their support of MM growth and osteoclastogenesis both in vitro and in vivo. These studies will shed novel insight into the molecular mechanisms underlying the protective effects of BMSCs on MM cells and reveal the novel molecular target(s) that Resveratrol may acts upon to achieve its anti-tumor effects.

Public Health Relevance

The primary goals of this research proposal are to determine 1) if XBP1s signaling plays a critical role in regulating the capacity of bone marrow stromal cells to support MM cell growth and osteoclastogenesis, and 2) if Resveratrol, an activator of SIRT1 and a bioactive dietary component of red wine, represses XBP1s signaling in BMSCs and compromises their support of MM growth and osteoclastogenesis. These studies will provide important information to develop nutritional and pharmacological strategies involving Resveratrol to reduce MM in humans.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21CA161150-02
Application #
8476206
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Agelli, Maria
Project Start
2012-06-01
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
2
Fiscal Year
2013
Total Cost
$161,060
Indirect Cost
$53,710
Name
University of Pittsburgh
Department
Dentistry
Type
Schools of Dentistry
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Lei, Y; Kansy, B A; Li, J et al. (2016) EGFR-targeted mAb therapy modulates autophagy in head and neck squamous cell carcinoma through NLRX1-TUFM protein complex. Oncogene 35:4698-707
Chen, Qian; Liu, Kai; Robinson, Andria R et al. (2013) DNA damage drives accelerated bone aging via an NF-?B-dependent mechanism. J Bone Miner Res 28:1214-28
Xu, Guoshuang; Liu, Kai; Anderson, Judy et al. (2012) Expression of XBP1s in bone marrow stromal cells is critical for myeloma cell growth and osteoclast formation. Blood 119:4205-14
Wang, Feng-Ming; Chen, Yi-Jiun; Ouyang, Hong-Jiao (2011) Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J 433:245-52
Wang, Feng-Ming; Galson, Deborah L; Roodman, G David et al. (2011) Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses pro-survival XBP1 signaling in human multiple myeloma cells. Exp Hematol 39:999-1006