Barrett's esophagus (BE) represents a substantial health care burden because it has a high frequency of progression to dysplasia and Barrett's-associated adenocarcinoma (BAA). A major reason for this problem is that we currently have limited approaches to prevent development of BAA, and of BE itself. If we could generate direct evidence that specific molecular pathways have a causative or preventive role in these events it would be of obvious benefit. Cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), the enzymes responsible for the high-output production of nitric oxide (NO) and prostaglandins, respectively, are both implicated in dysregulation of epithelial cell growth and in GI carcinogenesis. Recent evidence suggests that arginase, the endogenous competitive inhibitor of iNOS, has important biological effects by blocking NO synthesis, but also has direct effects via diversion of L-arginine to other pathways, such as polyamine synthesis. Our data in human patients shows frequent and abundant expression of iNOS and COX-2 in BE and BAA, and we have recently determined that the arginase II enzyme (argll) is significantly downregulated in BE compared with the proximal esophagus in BE patients. We hypothesize that iNOS and COX-2 play a causal role in development of BE and in progression to BAA, while argll protects against these events. The PI proposes to use the R21 mechanism to apply his expertise about these enzymes in the GI mucosa to new studies in animal models of BE.
In Aim 1, we will employ a surgical model of gastroduodenal-esophageal reflux created by esophagojejunostomy, which has been shown to produce BE in rats and has been recently applied to mice. We will develop this model in our lab and determine if COX-2 or iNOS deletion protects against, and if argll deletion enhances, development of BE and carcinoma. We will compare macroscopic and histologic evidence of BE and cancer, gene expression of COX-2, iNOS, and arginases, histologic evidence of apoptosis and proliferation in: A. wild-type (WT) vs. COX-2-/- mice, B. WT vs. iNOS-/- mice, and C. WT vs. argll-/-mice.
In Aim 2, we will use injection of the lower esophageal sphicter (LES) with botulinum toxin (BoTx) to induce gastroesophageal reflux by inhibiting LES function. We will study macroscopic and histologic evidence of esophagitis, BE and BAA, gene expression, apoptosis and proliferation in A. wild-type (WT) vs. COX-2-/- mice, B. W'I- vs. iNOS -/-mice, and C. WT vs. argll -/- mice. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21DK063626-02
Application #
6665329
Study Section
Special Emphasis Panel (ZRG1-GMA-2 (01))
Program Officer
Hamilton, Frank A
Project Start
2002-09-30
Project End
2005-08-31
Budget Start
2003-09-01
Budget End
2005-08-31
Support Year
2
Fiscal Year
2003
Total Cost
$148,500
Indirect Cost
Name
University of Maryland Baltimore
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Wilson, Keith T; Crabtree, Jean E (2007) Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 133:288-308
Bussiere, Francoise I; Chaturvedi, Rupesh; Asim, Mohammad et al. (2006) Low multiplicity of infection of Helicobacter pylori suppresses apoptosis of B lymphocytes. Cancer Res 66:6834-42
Bussiere, Francoise I; Chaturvedi, Rupesh; Cheng, Yulan et al. (2005) Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J Biol Chem 280:2409-12
Cheng, Yulan; Chaturvedi, Rupesh; Asim, Mohammad et al. (2005) Helicobacter pylori-induced macrophage apoptosis requires activation of ornithine decarboxylase by c-Myc. J Biol Chem 280:22492-6
Gobert, Alain P; Cheng, Yulan; Akhtar, Mahmood et al. (2004) Protective role of arginase in a mouse model of colitis. J Immunol 173:2109-17
Chaturvedi, Rupesh; Cheng, Yulan; Asim, Mohammad et al. (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 279:40161-73
Xu, Hangxiu; Chaturvedi, Rupesh; Cheng, Yulan et al. (2004) Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 64:8521-5
Cross, Raymond K; Wilson, Keith T (2003) Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis 9:179-89