The goal of this project is to develop a nanoelectrode that can be used to record from and stimulate individual neurons of the intact brain. Such an electrode would permit neuroscientists to investigate, as never before accomplished, the role of single and groups of neurons in brain function. During any task, cognitive, motor, or perceptual, neurons discharge their action potentials in complex asynchronous patterns. The discharges are noisy and debate continues about how neural messages are encoded in neural discharge patterns. Without the ability to externally control the discharges of neurons independently of one another, something that is impossible with current technology, neuroscientists simply lack the tools needed to systematically attack the key question of how information is encoded in neuronal discharges. Without this basic understanding of how the discharges of neurons contribute to brain function, there is really no hope that artificial neural control systems could be developed which truly replicate the behavior of lost neural tissue. Modern techniques in nanofabrication will be used to build the nanoelectrodes. These techniques should permit the probes to be produced in mass quantities with uniform dimensions and physical and chemical properties. Templating techniques will be used, enabling a potentially wide array of nanostructures, including coaxial arrangements of different materials, to be fabricated with high reproducibility. The longterm objective of this work is to use nanoelectrodes in neuroprosthetic devices, providing designers with more precise control of neural activity than previously imaginable. If successful, the prospect of restorating close to normal function in human patients with neural disorders would take a big step forward.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Exploratory/Developmental Grants (R21)
Project #
1R21EB004200-01
Application #
6809797
Study Section
Special Emphasis Panel (ZRG1-MDCN-C (55))
Program Officer
Peng, Grace
Project Start
2004-09-01
Project End
2006-08-31
Budget Start
2004-09-01
Budget End
2005-08-31
Support Year
1
Fiscal Year
2004
Total Cost
$142,680
Indirect Cost
Name
Northwestern University at Chicago
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
160079455
City
Evanston
State
IL
Country
United States
Zip Code
60201
Chen, Hui; Zhao, Yan; Liu, Mingna et al. (2015) Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Invest Ophthalmol Vis Sci 56:1971-84
Feng, Liang; Zhao, Yan; Yoshida, Miho et al. (2013) Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Invest Ophthalmol Vis Sci 54:1106-17
Cantrell, Donald R; Cang, Jianhua; Troy, John B et al. (2010) Non-centered spike-triggered covariance analysis reveals neurotrophin-3 as a developmental regulator of receptive field properties of ON-OFF retinal ganglion cells. PLoS Comput Biol 6:e1000967
Cantrell, Donald R; Troy, John B (2009) Extracellular stimulation of mouse retinal ganglion cells with non-rectangular voltage-controlled waveforms. Conf Proc IEEE Eng Med Biol Soc 2009:642-5
Cantrell, Donald R; Inayat, Samsoon; Taflove, Allen et al. (2008) Incorporation of the electrode-electrolyte interface into finite-element models of metal microelectrodes. J Neural Eng 5:54-67
Cantrell, Donald R; Troy, John B (2008) A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits. Conf Proc IEEE Eng Med Biol Soc 2008:2768-71
Troy, John B; Cantrell, Donald R; Taflove, Allen et al. (2006) Modeling the electrode-electrolyte interface for recording and stimulating electrodes. Conf Proc IEEE Eng Med Biol Soc 1:879-81
Qiao, Yi; Chen, Jie; Guo, Xiaoli et al. (2005) Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling. Nanotechnology 16:1598-1602