Malaria is a life-threatening disease caused by one the four species of Plasmodium parasites that are transmitted to people through the bites of infected mosquitoes. In 2012 alone, malaria caused over 625 000 deaths, mostly among African children. Due to its high child mortality and prevalence in Sub-Saharan regions, in 2000 a new program was launched in Nigeria, the Roll Back Malaria (RBM), aiming at reducing the burden of malaria by using presumptive treatment (PT) based, in many cases, only on fever as single sign of malaria infection. This approach, necessary due to limited laboratory support leading to long waiting times for laboratory diagnostic and consequently increased risks associated with delayed anti-malaria treatments, is often the only available option for local health service providers. Although studies have shown a significant decrease in malaria burden since the beginning of the RBM program in areas where the PT approach is employed, continuation of this practice already led to over-diagnosis of the malaria, under-diagnosis of other illness, increased drug wastage, increase adverse anti-malaria drug reactions, increased parasite-drug- resistance, and unnecessary financial burden to local health systems. We propose to develop an antibody- free diagnostic screening device that is based on the principles of magnetic levitation, allowing for separation of infected red blood cells from un-infected red blood cells. Our screening device will be light-weight, disposable, and cheap to manufacture with an indefinite shelf life at room temperature. The prototype system requires less than a drop of fingerprick blood (<1 ??L) and a small volume of RBC-friendly buffer containing paramagnetic ions. Binary diagnostic results is obtained within a few minutes solely by using a set of permanent magnets immobilized in a plastic structure surrounding a glass/plastic capillary containing the blood. Results are recorded and stored using a standard camera phone. No additional imaging equipment, staining reagents, or consumables are required.

Public Health Relevance

The purpose of this application is to test the specificity and sensitivity of a novel screening/diagnostic device based on the principles of magnetic levitation for detection of malaria-infected blood, both is laboratory conditions as well as on the filed. The results obtained using the device will be imaged and analyzed using a standard cell phone camera and compared against the results obtained using standard microscopy-based diagnostic methods.

National Institute of Health (NIH)
Fogarty International Center (FIC)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IMST-K (50))
Program Officer
Povlich, Laura
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beth Israel Deaconess Medical Center
United States
Zip Code
Andersen, Mikkel S; Lu, Shulin; Lopez, Gregory J et al. (2018) A Novel Implementation of Magnetic Levitation to Quantify Leukocyte Size, Morphology, and Magnetic Properties to Identify Patients with Sepsis. Shock :
Andersen, Mikkel Schou; Howard, Emily; Lu, Shulin et al. (2017) Detection of membrane-bound and soluble antigens by magnetic levitation. Lab Chip 17:3462-3473
Felton, Edward J; Velasquez, Anthony; Lu, Shulin et al. (2016) Detection and quantification of subtle changes in red blood cell density using a cell phone. Lab Chip 16:3286-95
Platt, Jonathan M; Lowe, Sarah R; Galea, Sandro et al. (2016) A Longitudinal Study of the Bidirectional Relationship Between Social Support and Posttraumatic Stress Following a Natural Disaster. J Trauma Stress 29:205-13
Baday, Murat; Calamak, Semih; Durmus, Naside Gozde et al. (2016) Integrating Cell Phone Imaging with Magnetic Levitation (i-LEV) for Label-Free Blood Analysis at the Point-of-Living. Small 12:1222-1229
Tasoglu, Savas; Khoory, Joseph A; Tekin, Huseyin C et al. (2015) Levitational Image Cytometry with Temporal Resolution. Adv Mater 27:3901-8
Knowlton, S M; Sencan, I; Aytar, Y et al. (2015) Sickle cell detection using a smartphone. Sci Rep 5:15022
Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur et al. (2015) Smart-Phone Based Magnetic Levitation for Measuring Densities. PLoS One 10:e0134400