Recently a new paradigm for doing infrared (IR) spectroscopy was developed in the Principal Investigator's (Pl's) laboratory. PA-IR uses a focal plane array (FPA) detector onto which a beam of light dispersed by a prism or grating is focused. The broad range of frequencies displayed on the pixel array simultaneously make this a multiplex technique without using the complex scanning mechanism or computational requirements (for Fourier transformation of the data) used in FT-IR interferometry. Thus the no-moving parts configuration of the PA-IR instrument provides the ruggedness required to make the instrument the size of a """"""""shoe-box"""""""" and hence portable. In addition the increased sensitivity (100-1000X over single element FT-IR detectors) of the FPA can provide an IR spectrum to be accumulated in as little as 10 microseconds. The only current limitation comes from the frequency range available (3400-2000 cm[-1]) due to the initial availability of only indium-antimonide FPAs during the development of the prototype. This proposal is to design and construct a portable """"""""broad band"""""""" PA-IR instrument that works in the more traditional IR """"""""fingerprint"""""""" region (2000-800 cm [-1]) now that Mercury-Cadmium-Telluride FPAs are commercially available and show that it has the sensitivity and speed for in vivo disease prediction/diagnosis. If the PA-IR instrument is coupled with an IR fiber optic sampling probe, it should be possible to characterize ocular tissues in the lens. The advantage of this fiber optic PA-IR technique over conventional dynamic light scattering (DLS) systems currently in use for eye diagnostics is that PA-IR will provide a chemical signature of the various components (collagen IV, gamma-crystallin, etc.) present simultaneously in the """"""""real-time"""""""" domain potentially allowing both qualitative and quantitative analysis of the components. For example, PA-IR would allow the detection of protein aggregation (dimers, oligomers) and be able to detect changes in the amount of alpha-helical, beta-sheet or disordered conformation in a protein thereby detecting the onset of cataracts at a very early stage before protein particles become large enough to be detected by DLS. Once this """"""""broad Band"""""""" PA-IR is shown to have high sensitivity then other applications such as monitoring the presence of airborne bacteria and viruses in hospital environments becomes feasible as well.
Hartman, Olga; Zhang, Chu; Adams, Elizabeth L et al. (2010) Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials 31:5700-18 |
Hartman, Olga; Zhang, Chu; Adams, Elizabeth L et al. (2009) Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications. Biomacromolecules 10:2019-32 |
Snively, Christopher M; Chase, D Bruce; Rabolt, John F (2009) Parallel spectroscopic method for examining dynamic phenomena on the millisecond time scale. J Comb Chem 11:345-9 |
Snively, Christopher M; Kim, Young Shin; Chase, D Bruce et al. (2008) Rapid detection of low concentrations of aqueous species in the presence of spectral overlap using planar array infrared spectroscopy. Appl Spectrosc 62:337-9 |