Cellular Homeostasis Pathways in Bacteria Maintaining cellular homeostasis is critical for balanced cell growth. Yet remarkably little is known about the connections between processes that contribute to homeostasis. A number of transcription-focused studies have elucidated some of this wiring, especially for responses to specific stresses, but other contributions to homeostasis remain oblique. Here we focus on two understudied features of bacteria to understand their contributions to cellular homeostasis. First, we are teasing apart processes in the envelope compartment of the cell that interlock its complex functions, and coordinate with the cytoplasm. Second, we are exploring how the cell controls protein abundance both in response to differential conditions, and in response to cell differentiation. As protein production constitutes the majority of the energy expended by the bacterial cell, it is critical that protein production can change as needed. Our biological studies are powered by genome-scale technologies. We identify novel envelope pathways using chemical genomics, and also with our method, currently in development, for pooled genetic interaction analysis. This method is based on double knockdowns made with CRISPRi (CRISPR/Cas9 interference) technology. We are determining how protein abundance is controlled using global technologies to measure protein abundance (ribosome profiling + mRNAseq) coupled with a new method we are developing to measure mRNA decay at genome scale. In each case, we use the datasets we generate as a starting point for detailed mechanistic analysis of interesting findings. Importantly, because the methods powering our research are readily portable across bacteria, we are now studying the envelope both in E. coli and in B. subtilis, enabling evolutionary comparison across the Gram-positive/Gram- negative divide. We are also actively working to port these methods to medically and environmentally relevant non-model organisms. Finally, as our high quality datasets meet the standard necessary for providing a reliable entry point for mechanistic studies, they are an essential resource for the study of multiple cell processes by the scientific community.

Public Health Relevance

Too small to be seen by eye, yet everywhere we look, bacteria have much to teach us. We're using cutting- edge techniques to understand how bacteria work, so we are better able to fight the bacteria that seek to do us harm or to use bacteria as molecular factories.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
5R35GM118061-02
Application #
9291480
Study Section
Special Emphasis Panel (ZGM1-TRN-7 (MR))
Program Officer
Reddy, Michael K
Project Start
2016-06-07
Project End
2021-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
2
Fiscal Year
2017
Total Cost
$907,698
Indirect Cost
$335,018
Name
University of California San Francisco
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Zhang, Yan; Burkhardt, David H; Rouskin, Silvi et al. (2018) A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation. Mol Cell 70:274-286.e7
Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D et al. (2017) Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell Syst 4:291-305.e7
Hussmann, Jeffrey A; Osadnik, Hendrik; Gross, Carol A (2017) Ribosomal Architecture: Constraints Imposed by the Need for Self-Production. Curr Biol 27:R798-R800
Baggett, Natalie E; Zhang, Yan; Gross, Carol A (2017) Global analysis of translation termination in E. coli. PLoS Genet 13:e1006676
Burkhardt, David H; Rouskin, Silvi; Zhang, Yan et al. (2017) Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. Elife 6:
Peters, Jason M; Colavin, Alexandre; Shi, Handuo et al. (2016) A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell 165:1493-1506
Zhao, Heng; Sun, Yingjie; Peters, Jason M et al. (2016) Depletion of Undecaprenyl Pyrophosphate Phosphatases Disrupts Cell Envelope Biogenesis in Bacillus subtilis. J Bacteriol 198:2925-2935
Adamson, Britt; Norman, Thomas M; Jost, Marco et al. (2016) A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell 167:1867-1882.e21
Shiver, Anthony L; Osadnik, Hendrik; Kritikos, George et al. (2016) A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S. PLoS Genet 12:e1006124