EXCEED THE SPACE PROVIDED. Cellular immunity is mediated largely through T-cells which interact with foreign antigens presented in the context of classical MHC class I, class II and non-classical MHC molecules. The main goal of this proposal is to understand the structural basis for T-cell recognition and T-cell signaling. The long term goal is to assemble a complete TCR signaling complex that includes the o_i_TCR, pMHC, CD3y, 8, _, _ and CD8. T-cell development will be probed through structural studies of the pre-T-cell receptor. A comparison of how y_$ TCRs recognize their antigens compared to (x_ TCRs will be evaluated from the _/,5TCR/'rl0 or T22 non- classical MHC complex. The 0_137,8 and pre-T-cell receptors all recognize and interact with CD3, but their interactions differ as the components of the various TCR types are not conserved. The CD3 components will be studied independently and as complexes with the different TCRs. In addition, the CD8 co-receptor interaction will be investigated as TCR-pMHC-CD8 complex. Many key questions will be addressed including the structural principles of TCR/MHC recognition that define MHC restriction, high affinity TCR binding is accomplished, whether conformational flexibility (entropic) is reduced in the CDR's of these high affinity TCRs, whether CD8 interacts with both pMHC and TCR, and the major question concerning the structure, stoichiometry and function of the T-cell signaling complex. This later goal is ambitious but represents the only way to probe the structural basis of T-cell signaling. The benefits from this work include an increased understanding of the immune response to microbial pathogens and elucidation of the structural basis of tolerance, autoimmunity, alloreactivity, cross-reactivity and host versus graft disease in transplantation. The IRPG represents a joint effect by two laboratories (Dr. lan Wilson, project I - structural immunology and Dr. Luc Teyton, project II - cellular immunology) to clone, express and purify sufficient quantities of (xl3TCR, pre-TCR, pMHC, CD8 (o_(z,(_) and CD3y, 8, _, in order to characterize biochemically and immunologically these TCR components, to crystallize each component alone and in complex with their relevant ligands and to determine their X-ray structures. The synergy between these proposals tremendously enhances and complements each individual project and substantially enhances the likely success of each. PERFORMANCE SITE ========================================Section End===========================================

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI042266-08
Application #
6829659
Study Section
Special Emphasis Panel (ZRG1-EI (02))
Program Officer
Kirkham, Perry M
Project Start
1998-01-01
Project End
2007-12-31
Budget Start
2005-01-01
Budget End
2005-12-31
Support Year
8
Fiscal Year
2005
Total Cost
$545,595
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Collins, Bernard C; Nakahara, Hiro; Acharya, Sharmistha et al. (2017) Crystal structure of an anti-idiotype variable lymphocyte receptor. Acta Crystallogr F Struct Biol Commun 73:682-687
Das, Nabanita; Dewan, Varun; Grace, Peter M et al. (2016) HMGB1 Activates Proinflammatory Signaling via TLR5 Leading to Allodynia. Cell Rep 17:1128-1140
Baranczak, Aleksandra; Liu, Yu; Connelly, Stephen et al. (2015) A fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in Caenorhabditis elegans. J Am Chem Soc 137:7404-14
Lockner, Jonathan W; Eubanks, Lisa M; Choi, Jennifer L et al. (2015) Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm 12:653-62
Jiménez-Dalmaroni, Maximiliano J; Radcliffe, Catherine M; Harvey, David J et al. (2015) Soluble human TLR2 ectodomain binds diacylglycerol from microbial lipopeptides and glycolipids. Innate Immun 21:175-93
Lee, Ji Yeon; Kim, Hyoun Sook; Baek, In Wha et al. (2013) Overexpression, crystallization and preliminary X-ray crystallographic analysis of the variable lymphocyte receptor 2913 ectodomain fused with internalin B. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:39-41
Penchala, Sravan C; Connelly, Stephen; Wang, Yu et al. (2013) AG10 inhibits amyloidogenesis and cellular toxicity of the familial amyloid cardiomyopathy-associated V122I transthyretin. Proc Natl Acad Sci U S A 110:9992-7
Grimster, Neil P; Connelly, Stephen; Baranczak, Aleksandra et al. (2013) Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. J Am Chem Soc 135:5656-68
Fernandes, Ricardo A; Shore, David A; Vuong, Mai T et al. (2012) T cell receptors are structures capable of initiating signaling in the absence of large conformational rearrangements. J Biol Chem 287:13324-35
Hong, Minsun; Yoon, Sung-Il; Wilson, Ian A (2012) Recombinant expression of TLR5 proteins by ligand supplementation and a leucine-rich repeat hybrid technique. Biochem Biophys Res Commun 427:119-24

Showing the most recent 10 out of 66 publications