Interleukin 15 (IL-15) is a molecule that is highly relevant to natural killer (NK) cell development and homeostasis. This proposal is now in its third cycle of competitive funding and focuses on IL-15 and its role in human NK cell development, effector function and cancer.
Our specific aims remain relatively unchanged: 1) To further identify and characterize progenitors and precursors that differentiate into human NK cells;2) To better understand the role of IL-15 in regulating human NK cell effector functions;3) To identify and assess the mechanism(s) by which deregulation of endogenous IL-15 leads to the induction of acute T and NK cell large granular lymphocyte (LGL) leukemia, and to develop a therapeutic strategy that effectively cures this leukemia. The immediate past cycle of funding has been marked by a series of novel findings that include (but are not limited to) the in situ discovery of a CD34(+) human NK cell progenitor population as well as the successive stages of human NK cell intermediaries within secondary lymphoid tissue;a novel """"""""immature NK cell"""""""" in mucosal associated lymphoid tissue that constitutively expresses IL-22, a cytokine that is important for epithelial cell secretion of anti-microbial peptides;a novel role for SET, an inhibitor of the phosphatase PP2A, in modulating NK cell interferon gamma (IFN-?) secretion;and a process called reciprocal antagonism, whereby NK cell pro-inflammatory signaling simultaneously suppresses its own constitutive anti-inflammatory signaling, and vice-versa. Finally, we discovered that IL-15-mediated leukemogenesis involves a process of non-random methylation across the genome, a process that silences putative tumor suppressor genes and is highly responsive to hypomethylation therapy. In the current proposal, we provide preliminary data supporting a role for dendritic cell IL-1? as critical to the homeostasis of the IL-22-secreting immature NK cell and explore its differentiation to IFN-?-secreting NK cell;we explore the role of at least two factors, RUNX2 and SET, in mediating IL-15 NK cell effector function, and we provide preliminary data suggesting that excessive methylation in IL-15-mediated leukemogenesis may be related to alteration of microRNA that regulate DNA methyltransferases. The latter discovery not only promises to provide insight into mechanism of disease but also therapeutic strategies to build upon our early success with hypomethylation therapy for LGL leukemia. While this proposal continues to contain basic and pre-clinical experimentation, the principal investigator has used discoveries from this and other work to enter hundreds of cancer patients onto clinical trials. The National Cancer Institute will soon make IL-15 available to experienced clinical investigators for early phase clinical trials in cancer patients, and work outlined in this proposal will likely bear fruit for such trials. It will also likely be useful for modulating the immune system in treating acute myeloid leukemia, for providing new insights into mucosal immunity that will likely be important for oral vaccine development, and for establishing new preclinical data directing us toward successful treatment of acute LGL leukemia, currently a uniformly fatal disease.

Public Health Relevance

Cancer is now the leading cause of death in individuals infected with the human immunodeficiency virus, reminding us how important a competent immune system is for cancer prevention. The recent successful development of the vaccine preventing human papilloma virus infection illustrates the power and rewards of immunology research. Funding of this proposal will advance our understanding of basic immunology as well as strategies to prevent and treat cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Transplantation, Tolerance, and Tumor Immunology (TTT)
Program Officer
Howcroft, Thomas K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Dai, Hong-Sheng; Caligiuri, Michael A (2018) Molecular Basis for the Recognition of Herpes Simplex Virus Type 1 Infection by Human Natural Killer Cells. Front Immunol 9:183
Chen, Luxi; Youssef, Youssef; Robinson, Cameron et al. (2018) CD56 Expression Marks Human Group 2 Innate Lymphoid Cell Divergence from a Shared NK Cell and Group 3 Innate Lymphoid Cell Developmental Pathway. Immunity 49:464-476.e4
Victor, Aaron R; Weigel, Christoph; Scoville, Steven D et al. (2018) Epigenetic and Posttranscriptional Regulation of CD16 Expression during Human NK Cell Development. J Immunol 200:565-572
Deng, Youcai; Wang, Fangjie; Hughes, Tiffany et al. (2018) FOXOs in cancer immunity: Knowns and unknowns. Semin Cancer Biol 50:53-64
Scoville, Steven D; Nalin, Ansel P; Chen, Luxi et al. (2018) Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood 132:1792-1804
Chan, Wing Keung; Kang, Siwen; Youssef, Youssef et al. (2018) A CS1-NKG2D Bispecific Antibody Collectively Activates Cytolytic Immune Cells against Multiple Myeloma. Cancer Immunol Res 6:776-787
Freud, Aharon G; Mundy-Bosse, Bethany L; Yu, Jianhua et al. (2017) The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity 47:820-833
Chen, L; Mao, H; Zhang, J et al. (2017) Targeting FLT3 by chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Leukemia 31:1830-1834
Dai, Hong-Sheng; Griffin, Nathaniel; Bolyard, Chelsea et al. (2017) The Fc Domain of Immunoglobulin Is Sufficient to Bridge NK Cells with Virally Infected Cells. Immunity 47:159-170.e10
Vasu, Sumithira; He, Shun; Cheney, Carolyn et al. (2016) Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood 127:2879-89

Showing the most recent 10 out of 44 publications