Our purpose is to develop kinetic tools for studying enzyme mechanisms, and to apply them to representative enzymes.
Specific aims will be: 1) Measurement of 15N isotope effects at N-1 of the nicotinamide ring of DPN and its analogs for alcohol, formate and glucose-6-P dehydrogenases in order to confirm the proposal that deformation of the ring to a boat form is responsible for inducing hydride transfer to C-4. 13C isotope effects will be measured at C-4 in order to complete the measurement of primary and secondary isotope effects in these systems and deduce transition state structures as a function of the redox potential of the nucleotides. 2) Determination of the mechanism by which carboxyl groups are transfered between bicarbonate, biotin and other substrates in enzymes containing biotin. We will measure 13C, 18-O and deuterium isotope effects on these reactions, and will attempt to synthesize carboxyphosphate from CO2 and phosphate. 3) Measurement of secondary 18-O isotope effects on phosphoryl transfer to deduce whether the mechanisms are associative or dissociative. Molecules to be labeled in the non-bridge positions with 18-O include glucose-6-P (to be used with hexokinase and phosphoglucomutase) and ATP (to be used with kinases and ATPases). We will also measure such isotope effects with UPA and ribonuclease, and with Beta-cyclodextrinyl-bisimidazole, which is a ribonuclease model. 4) Determination of the kinetic and chemical properties of analogs of phosphorylated metabolic intermediates containing sulfur or nitrogen in the bridge between carbon and phosphorus. The enzymatic reactions to be studied will be those of glycolysis and the conversion of glucose-6-P to ribulose-bis-P, plus the carboxylase for the latter. The purpose of this study is to determine how isosteric the replacement of oxygen with sulfur or nitrogen is, and how well phosphotransferases handle such analogs (which bears on the phosphoryl transfer mechanism). 5) Investigation of the kinetics of allosteric inhibition of prephenate by tyrosine. The hope is to develop rate equations and theory to describe this interaction using both the normal substrate, prephenate, and the analog lacking one double bond in the ring (as well as the keto group in the side chain), which is oxidized reversibly without decarboxylation.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37GM018938-19
Application #
3484269
Study Section
Biochemistry Study Section (BIO)
Project Start
1977-01-01
Project End
1991-12-31
Budget Start
1990-01-01
Budget End
1990-12-31
Support Year
19
Fiscal Year
1990
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Reinhardt, Laurie A; Thoden, James B; Peters, Greg S et al. (2013) pH-rate profiles support a general base mechanism for galactokinase (Lactococcus lactis). FEBS Lett 587:2876-81
Smith, Brian C; Anderson, Mark A; Hoadley, Kelly A et al. (2012) Structural and kinetic isotope effect studies of nicotinamidase (Pnc1) from Saccharomyces cerevisiae. Biochemistry 51:243-56
Thoden, James B; Reinhardt, Laurie A; Cook, Paul D et al. (2012) Catalytic mechanism of perosamine N-acetyltransferase revealed by high-resolution X-ray crystallographic studies and kinetic analyses. Biochemistry 51:3433-44
Saylor, Benjamin T; Reinhardt, Laurie A; Lu, Zhibing et al. (2012) A structural element that facilitates proton-coupled electron transfer in oxalate decarboxylase. Biochemistry 51:2911-20
Marlier, John F; Robins, Lori I; Tucker, Kathryn A et al. (2010) A kinetic and isotope effect investigation of the urease-catalyzed hydrolysis of hydroxyurea. Biochemistry 49:8213-9
Van Vleet, Jeremy; Kleeb, Andreas; Kast, Peter et al. (2010) 13C isotope effect on the reaction catalyzed by prephenate dehydratase. Biochim Biophys Acta 1804:752-4
Pinto-Tomas, Adrian A; Anderson, Mark A; Suen, Garret et al. (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120-3
Van Vleet, Jeremy L; Reinhardt, Laurie A; Miller, Brian G et al. (2008) Carbon isotope effect study on orotidine 5'-monophosphate decarboxylase: support for an anionic intermediate. Biochemistry 47:798-803
Poyner, Russell R; Anderson, Mark A; Bandarian, Vahe et al. (2006) Probing nitrogen-sensitive steps in the free-radical-mediated deamination of amino alcohols by ethanolamine ammonia-lyase. J Am Chem Soc 128:7120-1
Waldrop, G L; Braxton, B F; Urbauer, J L et al. (1994) Secondary 18O and primary 13C isotope effects as a probe of transition-state structure for enzymatic decarboxylation of oxalacetate. Biochemistry 33:5262-7

Showing the most recent 10 out of 58 publications