Dopamine beta-monooxygenase (DbetaM) catalyzes the final step in the biosynthesis of norepinephrine from tyrosine. Norepinephrine serves either as a hormone (in the adrenal gland) or a neurotransmitter (in the sympathetic nervous system). Because of the vital physiologic roles played by norepinephrine, DbetaM is a logical target in establishing a molecular basis for our understanding of neurologic disorders and in developing drug therapies. The goal of this proposal is to elucidate the molecular mechanisms of catalysis and regulation for DbetaM from bovine adrenal medulla. A long term objective is to integrate the properties of the isolated enzyme into a detailed understanding of its structure and function within adrenal chromaffin granules.
Specific aims are in three categories. I. Reaction Mechanism: (a) The nature of reactive intermediates in enzyme turnover and inhibition will be pursued to include: (i) detection of a Cu(11)-OOH species, postulated to form prior to substrate hydroxylation; (ii) demonstration of the reduction of enzymic cupric ion at the level of the E-P complex, rather than free enzyme; (iii) elaboration of the oxygen intermediate leading to hydrogen abstraction from substrate; and (iv) distinction between species leading to enzyme turnover vs inactivation with cresols as mechanism based inhibitors. (b) Differentiation of the properties for copper binding of each of the two metal sites per subunit will be attempted. II. Structure and Regulation: Experiments will proceed in several directions, which include: (a) expression and mutagenesis of our recently cloned full length c-DNA; (b) preparation of and attempted crystallization of carbohydrate free enzyme; (c) identification of the membrane anchor for the membranous form of DbetaM; (d) elaboration of the pathway for the biogenesis of soluble vs membrane bound enzyme; (e) further characterization of a proposed allosteric regulation of enzyme by ascorbate; and (f) affinity labelling of the fumarate activator site. III. Relationship of DbetaM Properties In Vitro to its Function in Chromaffin Granules: Evidence has been presented for dual pathways in the reduction of membrane bound vs soluble enzyme within the intravesicular space of chromaffin granules. The detailed role of internal and external reductants in the turnover of DbetaM in chromaffin granule ghosts will be pursued.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Biochemistry Study Section (BIO)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Berkeley
Schools of Arts and Sciences
United States
Zip Code
Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus et al. (2017) 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. J Am Chem Soc 139:1984-1997
Collazo, Lara; Klinman, Judith P (2016) Control of the Position of Oxygen Delivery in Soybean Lipoxygenase-1 by Amino Acid Side Chains within a Gas Migration Channel. J Biol Chem 291:9052-9
Zhang, Jianyu; Klinman, Judith P (2016) Convergent Mechanistic Features between the Structurally Diverse N- and O-Methyltransferases: Glycine N-Methyltransferase and Catechol O-Methyltransferase. J Am Chem Soc 138:9158-65
Hu, Shenshen; Cattin-Ortolá, Jérôme; Munos, Jeffrey W et al. (2016) Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C-H Activation by Soybean Lipoxygenase-1. Angew Chem Int Ed Engl 55:9361-4
Zhang, Jianyu; Kulik, Heather J; Martinez, Todd J et al. (2015) Mediation of donor-acceptor distance in an enzymatic methyl transfer reaction. Proc Natl Acad Sci U S A 112:7954-9
Zhang, Jianyu; Klinman, Judith P (2015) High-performance liquid chromatography separation of the (S,S)- and (R,S)-forms of S-adenosyl-L-methionine. Anal Biochem 476:81-3
Zhu, Hui; Peck, Spencer C; Bonnot, Florence et al. (2015) Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species. J Am Chem Soc 137:10448-51
Sharma, Sudhir C; Klinman, Judith P (2015) Kinetic Detection of Orthogonal Protein and Chemical Coordinates in Enzyme Catalysis: Double Mutants of Soybean Lipoxygenase. Biochemistry 54:5447-56
Zhu, Hui; Sommerhalter, Monika; Nguy, Andy K L et al. (2015) Solvent and Temperature Probes of the Long-Range Electron-Transfer Step in Tyramine ?-Monooxygenase: Demonstration of a Long-Range Proton-Coupled Electron-Transfer Mechanism. J Am Chem Soc 137:5720-9
Klinman, Judith P (2015) Dynamically achieved active site precision in enzyme catalysis. Acc Chem Res 48:449-56

Showing the most recent 10 out of 86 publications