Proteins destined for the periplasm or the outer membrane of Escherichia coli are synthesized initially in precursor form with a signal sequence at the amino terminus. This signal targets these precursor proteins to the cellular secretion machinery for translation from the cytoplasm. Three different genes were identified both by conditional mutations (sec) that cause a general block to secretion, and as suppressor (prl) of signal sequence mutations: secY/prlA, secE/prlG, and secA/prlD. Biochemical studies using purified components indicate that these three gene products are both necessary and sufficient to reconstitute the translocation reaction in vitro. Homologues of SecY and SecE have been found in many different eubacteria, archaebacteria, and in eukaryotes as diverse as yeast and mammals. In addition, homologues of key components in the well- characterized signal recognition particle (SRP) have been discovered in E. coli. This striking conservation, together with the universal nature of signal sequences, argues strongly that the basic mechanism of protein translocation has been conserved in all of the biological kingdoms. Accordingly, lessons learned from the analysis of the more experimentally tractable bacterial system will have direct-relevance for cell biologists in general. The role of the prokaryotic SRP in protein secretion is not yet clear. We propose several different genetic approaches to test current hypotheses and probe its function. The prl alleles of the three critical sec genes provide unique experimental tools. We hope to exploit these suppressor to probe the interactions between these critical components, and to continue to analyze their mechanistic role. Finally, outer membrane proteins are translocated from the cytoplasm by the Sec machinery, but we do not understand how they are distinguished from periplasmic proteins for assembly in the outer membrane. Strategies to identify cellular components required for this assembly process have been designed and are being implemented. Work done to date has identified a periplasmic stress regulon that is controlled by a two-component regulatory system, CpxA/R. We think it likely that genes in this regulon may code for important protein folding and targeting factors. Accordingly, we also propose to carry out a molecular characterization of this regulon.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37GM034821-19
Application #
6635924
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Program Officer
Shapiro, Bert I
Project Start
1985-04-01
Project End
2004-03-31
Budget Start
2003-04-01
Budget End
2004-03-31
Support Year
19
Fiscal Year
2003
Total Cost
$478,655
Indirect Cost
Name
Princeton University
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Lee, James; Sutterlin, Holly A; Wzorek, Joseph S et al. (2018) Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc Natl Acad Sci U S A 115:2359-2364
Grabowicz, Marcin; Silhavy, Thomas J (2017) Envelope Stress Responses: An Interconnected Safety Net. Trends Biochem Sci 42:232-242
May, Kerrie L; Silhavy, Thomas J (2017) Making a membrane on the other side of the wall. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1386-1393
Okuda, Suguru; Sherman, David J; Silhavy, Thomas J et al. (2016) Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 14:337-45
Sutterlin, Holly A; Shi, Handuo; May, Kerrie L et al. (2016) Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc Natl Acad Sci U S A 113:E1565-74
Lee, James; Xue, Mingyu; Wzorek, Joseph S et al. (2016) Characterization of a stalled complex on the ?-barrel assembly machine. Proc Natl Acad Sci U S A 113:8717-22
Soltes, Garner R; Schwalm, Jaclyn; Ricci, Dante P et al. (2016) The Activity of Escherichia coli Chaperone SurA Is Regulated by Conformational Changes Involving a Parvulin Domain. J Bacteriol 198:921-9
Konovalova, Anna; Mitchell, Angela M; Silhavy, Thomas J (2016) A lipoprotein/?-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. Elife 5:
Grabowicz, Marcin; Koren, Daria; Silhavy, Thomas J (2016) The CpxQ sRNA Negatively Regulates Skp To Prevent Mistargeting of ?-Barrel Outer Membrane Proteins into the Cytoplasmic Membrane. MBio 7:e00312-16
Mahoney, Tara F; Ricci, Dante P; Silhavy, Thomas J (2016) Classifying ?-Barrel Assembly Substrates by Manipulating Essential Bam Complex Members. J Bacteriol 198:1984-92

Showing the most recent 10 out of 90 publications