Metabolomics is a relatively novel Molecular Biological Tool (MBT), which employs highly sensitive instrumentation to obtain a measure of all small organic molecules present in a biological sample. Contemporary MBTs rely on quantitative PCR and measure the presence and abundance of keystone bacteria (e.g., Dehalococcoides) involved in the detoxification of priority contaminants such as chlorinated ethenes; however, the current tools fall short of informing about actual in situ dechlorination activity. Metabolomics measures small molecules that directly relate to active metabolism, and provides key insights into microbial community function and health. Chlorinated ethenes are among the most common contaminants impacting Superfund sites. Detoxification can be achieved by organohalide-respiring bacteria (e.g., Dehalococcoides) via stepwise reductive dechlorination to environmentally benign ethene; however, the degradation process often stalls at the toxic and carcinogenic intermediates cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC). MBTs applied in contemporary monitoring regimes cannot predict the occurrence of stalls, and costly remediation strategy changes are required. Laboratory experiments demonstrated that metabolomics distinguishes healthy microbiomes from ?sick? microbiomes and predicts degradation stalls or when ethene formation occurs. An MBT with these capabilities would greatly reduce overall project costs and management time, streamline the implementation of the most promising remedy, contribute to early site closures, and thus be a valuable asset to the remediation industry with tangible benefits to the U.S. tax payer. The proposed study will demonstrate the value and utility of the metabolomics approach as a prognostic and diagnostic monitoring tool for the remediation industry, and develop a path towards commercialization of this MBT.

Public Health Relevance

The research proposed herein is directly applicable to public health as a preventative measure via groundwater remediation. This study will leverage ongoing field demonstration efforts to create a commercially viable method of measuring the activity of contaminant-degrading bacteria and assessing overall microbiome health. The metabolome measurement will provide crucial information for early identification of remedial complications and promote efficient site management decision-making.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43ES030669-01
Application #
9777974
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Henry, Heather F
Project Start
2019-04-01
Project End
2020-03-31
Budget Start
2019-04-01
Budget End
2020-03-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Microbial Insights, Inc.
Department
Type
DUNS #
858462625
City
Knoxville
State
TN
Country
United States
Zip Code
37932