The University of North Carolina at Chapel Hill proposes to continue the training program in Cell and Molecular Biology (CMB). This program will train outstanding students in a broad interdisciplinary program focused on four major and related areas of research: 1) Nucleic acid biology, 2) dynamics of cell structure, 3) Signal Transduction, and 4) Regulation of Cell Growth and Differentiation. Preceptors come from eight departments in the School of Medicine or College of Arts and Sciences. The students will receive their Ph.D. degree in one of the participating departments or in one of three interdepartmental programs (Neurobiology, Toxicology, or Genetics). Students will take required courses in cell biology and molecular biology and a seminar course focusing on the evaluation of RO1 applications addressing questions consistent with the themes of the program. Students will also participate in CMB Discussion Group, a CMB Seminar Series and an annual research retreat. In addition to our focus on research and problem solving, we will provide career guidance and foster the development of excellent communication, mentoring and teaching skills. We will provide students with travel funds and a small research allowance to encourage and promote collaborative research. The overall goal is to help students view problems in cell and molecular biology from a broad perspective and to encourage them to apply a creative, multidisciplinary approach to solving these problems. Graduates of the CMB program at UNC-Chapel Hill will be prepared for careers in biomedical research and teaching and will be ready to tackle complex biological problems in the post-genome era.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Preusch, Peter C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Perkowski, Ellen Foot; Miller, Brittany K; McCann, Jessica R et al. (2016) An orphaned Mce-associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters. Mol Microbiol 100:90-107
Washington, Erica J; Mukhtar, M Shahid; Finkel, Omri M et al. (2016) Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proc Natl Acad Sci U S A 113:E3577-86
Watson, Leah J; Rossi, Guendalina; Brennwald, Patrick (2014) Quantitative analysis of membrane trafficking in regulation of Cdc42 polarity. Traffic 15:1330-43
McCann, Jessica R; McDonough, Justin A; Sullivan, Jonathan Tabb et al. (2011) Genome-wide identification of Mycobacterium tuberculosis exported proteins with roles in intracellular growth. J Bacteriol 193:854-61
Alan, Jamie K; Berzat, Anastacia C; Dewar, Brian J et al. (2010) Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src. Mol Cell Biol 30:4324-38
Zimmerman, Eric I; Dollins, Claudia M; Crawford, Melissa et al. (2010) Lyn kinase-dependent regulation of miR181 and myeloid cell leukemia-1 expression: implications for drug resistance in myelogenous leukemia. Mol Pharmacol 78:811-7
Johnson, Søren M; Torrice, Chad D; Bell, Jessica F et al. (2010) Mitigation of hematologic radiation toxicity in mice through pharmacological quiescence induced by CDK4/6 inhibition. J Clin Invest 120:2528-36
Sullivan, Kelly D; Mullen, Thomas E; Marzluff, William F et al. (2009) Knockdown of SLBP results in nuclear retention of histone mRNA. RNA 15:459-72
Douglas, Peter M; Summers, Daniel W; Ren, Hong-Yu et al. (2009) Reciprocal efficiency of RNQ1 and polyglutamine detoxification in the cytosol and nucleus. Mol Biol Cell 20:4162-73
Brady, Donita C; Alan, Jamie K; Madigan, James P et al. (2009) The transforming Rho family GTPase Wrch-1 disrupts epithelial cell tight junctions and epithelial morphogenesis. Mol Cell Biol 29:1035-49

Showing the most recent 10 out of 26 publications