The long-term goals and objectives of the T35 program is to continue to develop and enhance research training opportunities for veterinary students interested in careers in biomedical, behavioral, and clinical research. The program will provide intensive, short-term research training experiences for veterinary students from across the country that come to Stanford University for the summer. Each summer, eight first- through third-year veterinary students will be supported by the NIH and another two students will be supported by the Department of Comparative Medicine. Students will spend twelve weeks at Stanford training in basic, behavioral, or clinical research aspects of the health-related sciences Key elements of the research training plan include a mentored research project in a well-funded and productive laboratory, research-related workshops, research seminars, a journal club, research presentations, and career development sessions with veterinarians who are at different levels of career development and that contribute to research in diverse ways. The program will encourage veterinary students to pursue research careers by exposure to and short-term involvement in the health-related sciences. Training will be of sufficient depth to enable students, upon completion of the program, to have a thorough exposure to the principles underlying the conduct of research. The program is designed to help veterinary students develop careers that will exert a sustained, powerful influence on biomedical, behavioral, and clinical research.

Public Health Relevance

The United States needs more veterinary researchers. This program's primary objective is to help veterinary students develop research careers. The long-term effect of this program, and others like it, is strengthening of the nation's workforce in laboratory animal medicine, comparative pathology, and comparative medicine.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
NRSA Short -Term Research Training (T35)
Project #
5T35OD010989-13
Application #
8665505
Study Section
Special Emphasis Panel (ZOD1-CM-6 (02))
Program Officer
Moro, Manuel H
Project Start
2002-06-01
Project End
2018-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
13
Fiscal Year
2014
Total Cost
$57,620
Indirect Cost
$4,268
Name
Stanford University
Department
Veterinary Sciences
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Demars, Fanny; Clark, Kristen; Wyeth, Megan S et al. (2018) A single subconvulsant dose of domoic acid at mid-gestation does not cause temporal lobe epilepsy in mice. Neurotoxicology 66:128-137
Hofmann, Gabrielle; Balgooyen, Laura; Mattis, Joanna et al. (2016) Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy. Epilepsia 57:977-83
Zhang, Wei; Thamattoor, Ajoy K; LeRoy, Christopher et al. (2015) Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy. Hippocampus 25:594-604
Scharfman, Helen E; Buckmaster, Paul S (2014) Preface. Adv Exp Med Biol 813:xv-xviii
Toyoda, Izumi; Bower, Mark R; Leyva, Fernando et al. (2013) Early activation of ventral hippocampus and subiculum during spontaneous seizures in a rat model of temporal lobe epilepsy. J Neurosci 33:11100-15
Heng, Kathleen; Haney, Megan M; Buckmaster, Paul S (2013) High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54:1535-41
Ma, Yunyong; Ramachandran, Anu; Ford, Naomi et al. (2013) Remodeling of dendrites and spines in the C1q knockout model of genetic epilepsy. Epilepsia 54:1232-9
Buckmaster, Paul S; Haney, Megan M (2012) Factors affecting outcomes of pilocarpine treatment in a mouse model of temporal lobe epilepsy. Epilepsy Res 102:153-9
Lew, Felicia H; Buckmaster, Paul S (2011) Is there a critical period for mossy fiber sprouting in a mouse model of temporal lobe epilepsy? Epilepsia 52:2326-32
Buckmaster, Paul S; Lew, Felicia H (2011) Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci 31:2337-47

Showing the most recent 10 out of 13 publications