Early detection- of bioterrorism and infectious disease outbreaks caused by emerging pathogens is very important for public health, to allow prompt implementation of control measures. Routinely collected, automated health services data, including microbiology laboratory tests, ambulatory care and emergency department visits, hospitalizations, diagnostic tests, and prescription drug data could potentially be very useful for disease outbreak detection. However, mathematical, computational and statistical models are needed to implement such systems whenever the outcomes under surveillance already exist at some baseline level that does not require action. For example, if appropriate signal detection methods were available, identification of an anthrax bioterrorism attack might be accelerated through recognition of an unusual number of patients seeking care for cough and fever.; In this project, we will develop models for the early detection of infectious disease outbreaks and for monitoring an outbreak after it has been detected. This includes (i) models describing the natural temporal and geographical variation in the number of people utilizing the health services of interest, in order to adjust for e.g. seasonal and day-of-week effects and (ii) different space-time aberration detection models that will generate a signal when an outbreak have occurred. These models will be applied at different geographical scales, from individual wards of a single hospital to a whole country, as well as for different data specificity from very general symptoms such as fever to specific microbial disease strains and antimicrobial resistance profiles that migrate from one bacterial species to another. We will develop and test our new methods and models in two health plans (Harvard Pilgrim Health Care in Massachusetts, and Kaiser Permanente Northern California) that cover over 4 million people, a single large US referral hospital (Brigham and Women's), a statewide (Massachusetts) registry of MRSA, and a national (Argentine) consortium of 55 hospitals that monitors antibiotic resistance. The models and methods will be evaluated using both historical data from these health systems and simulated data based on different infectious disease transmission dynamics models.
Showing the most recent 10 out of 28 publications