This project seeks to develop a high density, minimally invasive electrode array for long-term recording and control of brain activity. Multielectrode arrays are an essential tool in experimental and clinical neuroscience, yet current arrays are severely limited by a mismatch between large or stiff electrodes and the fragile environment of the brain. Chronically implanted electrodes cause ongoing damage to the brain, and an active process of rejection eventually silences neural signals. Failure of chronic implants over long time-scales makes it very challenging to study the neural basis of learning. It also limits the power of brain machine interfaces for human prosthetics or neural stimulation based therapeutics. To minimize electrode damage, the size of implants must be reduced, but multichannel arrays built from the smallest electrodes are impossible to implant due to buckling of the individual fibers as they enter the brain. The proposed recording and stimulating electrode array solves this mechanical problem - achieving a high channel with sub-cellular (5 micron) microfibers distributed in three-dimensional volumes of the brain. To implant the device, individual electrodes are bundled together, strengthening each fiber through mutual support. During implant, the bundle of fibers splays apart and each fiber follows its own separate path into the brain as it is deflected by tissue inhomogeneity. This process preserves the minimally invasive properties of a single fiber. Chronic recordings from prototype designs reveal stable signals, including multiunit recordings with time-scales of months that show minimal drift in neural firing patterns. This project builds on preliminary data to engineer a robust, high channel count (64 channel polyimide) device suitable for both recording and stimulation in basic science studies and eventually for clinical applications. However, due to the minimally invasive nature of this brain interface, the device will be scalable to even higher channel counts. To advance this technology, the project involves a series of aims to optimize the electrode insulator, apply high performance tip coatings, and develop scalable manufacturing processes on a polyimide cable platform. These engineering aims are followed by rigorous benchmarks in vitro and in vivo, including 18 month tests of stimulating electrode capabilities. The project will also demonstrate the potential of the high density, minimally invasive electrode array to trigger diverse activity patterns by shaping the geometry of current flowing through small volumes of the brain.
Electrodes for recording and stimulating the brain are essential for basic research in neuroscience and they can also be used as pacemakers for the brain to promote healthy patterns of neural activity in various neural diseases. However, existing recording and stimulating arrays damage nearby tissue, induce local immune rejection, and fail to record and control neural activity stably. This project develops a new technology for neural recording and stimulation based on dense bundles of ultra-small fibers that increase the number of electrical channels while simultaneously minimizing tissue damage.
Gillis, Winthrop F; Lissandrello, Charles A; Shen, Jun et al. (2018) Carbon fiber on polyimide ultra-microelectrodes. J Neural Eng 15:016010 |
Deku, Felix; Mohammed, Shakil; Joshi-Imre, Alexandra et al. (2018) Effect of oxidation on intrinsic residual stress in amorphous silicon carbide films. J Biomed Mater Res B Appl Biomater : |
Deku, Felix; Cohen, Yarden; Joshi-Imre, Alexandra et al. (2018) Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording. J Neural Eng 15:016007 |
Pancrazio, Joseph J; Deku, Felix; Ghazavi, Atefeh et al. (2017) Thinking Small: Progress on Microscale Neurostimulation Technology. Neuromodulation 20:745-752 |
Liberti 3rd, William A; Markowitz, Jeffrey E; Perkins, L Nathan et al. (2016) Unstable neurons underlie a stable learned behavior. Nat Neurosci 19:1665-1671 |