Social interactions, a ubiquitous aspect of our everyday life, are critical to the health and survival of the species, but little is known about their underlying neural computations. The major limitation preventing our understanding of the neural underpinnings of social cognition is the lack of a suitable framework to allow us to study how it emerges in real time from interactions among brain networks. Indeed, examining the neural bases of complex social interactions has been traditionally performed by studying the brain of nonhuman primates in a laboratory environment in which the head and body are restrained while synthetic stimuli are presented on a computer monitor. However, it has become increasingly understood that studying the brain in spatially confined, artificial laboratory rigs poses severe limits on our capacity to understand the function of brain circuits. To overcome these limitations, we propose a novel approach to understand the neural underpinnings of social cognition. We will use a high-yield wireless system to study the cortical dynamics and plasticity of social interactions by recording population activity in multiple visual, temporal, and prefrontal cortical areas while nonhuman primates are interacting freely with their environment and with other animals. This new approach will enable us to uncover the dynamics of neuronal network activity that drives social interactions in an ethologically relevant behavioral task that involves sensory integration, memory, and complex decision-making. Our integrative project brings together innovative brain recording technologies and microelectronics together with large data sets analysis techniques. Our proposed research will constitute a paradigm shift by moving social neuroscience ? from simply observing animal behavior and recording the responses of single cells ? to a quantitative understanding of the distributed neuronal network encoding during social behavior in freely moving nonhuman primates performing rich naturalistic tasks. We anticipate that the large quantity of neural data recorded using our approach will be of great interest to clinicians and computational neuroscientists studying general properties of normal and dysfunctional neural networks, possibly leading to medical insights into the mechanisms of autism and attention deficit disorders that impair social interactions.

Public Health Relevance

We propose a novel approach to examine the neural bases of complex social interactions by simultaneously recording from multiple, relevant brain networks during macaque ethologically relevant social behavioral tasks that require animals to interact among each other. Our approach will shift the paradigm in neuroscience towards massive electrical recordings from multiple brain areas during free exploration in naturalistic environments. This research has the potential to provide a groundbreaking framework for understanding complex network computations in normal and dysfunctional brain states, and hence provide alternative solutions to improve mental health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01NS108680-01
Application #
9615685
Study Section
Special Emphasis Panel (ZNS1)
Program Officer
David, Karen Kate
Project Start
2018-09-30
Project End
2021-06-30
Budget Start
2018-09-30
Budget End
2019-06-30
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Texas Health Science Center Houston
Department
Neurosciences
Type
Schools of Medicine
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77030