The goal of this core is to serve Projects 1 and 2, by identifying HLA class I and class II epitopes derived from VZV, as a necessary prelude to the analyses of the dynamics of the epitope-specific T cell responses to vaccination with the zoster vaccine (Project 2). This data generated on the epitope specific T cell responses will be critical in evaluating the innate signatures that correlate with, and predict, the magnitude of the epitope specific T cell responses in Project 1. A key question that will be facilitated by the information generated in this core, is whether early innate signatures are capable of predicting the

Public Health Relevance

The goal of this core is to identify the epitopes recognized by antigen-specific T cells that respond to zoster vaccine or infection. This will be a prelude to the analysis of epitope specific T cell responses to vaccination, and facilitate the identification of innate signatures that predict the breadth of the T cell response.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI090023-04
Application #
8495231
Study Section
Special Emphasis Panel (ZAI1-QV-I)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$170,558
Indirect Cost
$48,467
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Lynn, David J; Pulendran, Bali (2018) The potential of the microbiota to influence vaccine responses. J Leukoc Biol 103:225-231
Yu, Tianwei (2018) Nonlinear variable selection with continuous outcome: a fully nonparametric incremental forward stagewise approach. Stat Anal Data Min 11:188-197
Levin, Myron J; Cai, Guang-Yun; Lee, Katherine S et al. (2018) Varicella-Zoster Virus DNA in Blood After Administration of Herpes Zoster Vaccine. J Infect Dis 217:1055-1059
Hagan, Thomas; Pulendran, Bali (2018) Will Systems Biology Deliver Its Promise and Contribute to the Development of New or Improved Vaccines? From Data to Understanding through Systems Biology. Cold Spring Harb Perspect Biol 10:
Kang, Hyun Min; Subramaniam, Meena; Targ, Sasha et al. (2018) Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol 36:89-94
Lopez, Romain; Regier, Jeffrey; Cole, Michael B et al. (2018) Deep generative modeling for single-cell transcriptomics. Nat Methods 15:1053-1058
Levin, Myron J; Kroehl, Miranda E; Johnson, Michael J et al. (2018) Th1 memory differentiates recombinant from live herpes zoster vaccines. J Clin Invest 128:4429-4440
Upadhyay, Amit A; Kauffman, Robert C; Wolabaugh, Amber N et al. (2018) BALDR: a computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data. Genome Med 10:20
Bowen, James R; Zimmerman, Matthew G; Suthar, Mehul S (2018) Taking the defensive: Immune control of Zika virus infection. Virus Res 254:21-26
Woodruff, Matthew Charles; Kim, Eui Ho; Luo, Wei et al. (2018) B Cell Competition for Restricted T Cell Help Suppresses Rare-Epitope Responses. Cell Rep 25:321-327.e3

Showing the most recent 10 out of 105 publications