In this core expression-cloning technologies will be utilized to generate a collection of mAbs that will be characterized in various contexts by the three projects. Further, arrays of hundreds or thousands of antibodies will be printed to protein microarrays for rapid screening of mAb or poly-clonal (serum) antibody epitope targeting. We will clone influenza-specific antibodies from plasmablasts activated after vaccination of healthy volunteers. As we have shown 50 to 70% of influenza-vaccine induced plasmablasts are influenza specific. Thus this effort will generate a large library of anti-HA and anti-NA human mAbs to the three or four vaccine strains. In order to isolate a larger library of NA-reactive antibodies we will use fluorescently labeled neuraminidase (NA) protein as bait to identify and sort anti-NA memory B cells from human PBMCs from patients infected with influenza. Finally, we have a substantial collection of human mAbs both cloned in our laboratory and canonical antibodies from the literature. These antibodies bind to all recent influenza vaccine strains and to various different proteins (HA, NA, NP, M) and epitopes in the HA-stalk and HA-head regions. Using microarrays of these printed antibodies we can readily determine the epitopes shared between recombinant HAs and whole virions. Further, using what we term """"""""epitope-shadowing"""""""" we can screen for global changes in the epitope specificity of serum samples by competition binding assays. This powerful tool will be further developed as a platform to use for similar experiments and to identify serum-specificity signatures correlated with protection (biomarker applications), to bin the """"""""paratope"""""""" of protective and non protective epitopes typically targeted, and to use as a powerful tool to quickly map epitopes targeted by new antibodies or sera. The antibody core services will be used by the various projects as follows: Project 1 will characterize conserved epitopes and mechanisms of neutralization from antibodies targeting both HA and NA proteins and will use the antibody arrays to screen for epitope specificities. Project 2 will use the antibody core to generate antibodies to determine how anti-influenza responses become skewed in particular cohorts and to scrutinize the specificity of novel memory B cell populations. The antibody microarray will be used to evaluate epitopes targeted by human subjects or by B cell subsets. Project 3 will use the antibodies to Fc FcR engagement to the mechanisms of antibody-mediated protection from influenza.

Public Health Relevance

With the discovery of many broadly-protective epitopes allowing neutralization of multiple influenza strains the generation of a broadly-protective one-shot influenza vaccine has become an almost tenable goal in recent years. Each of the projects in this program centers on aspects of antibody responses and the antibody core will provide antibodies and antibody microarrays to allow high throughput screening of antibody activities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109946-01
Application #
8667702
Study Section
Special Emphasis Panel (ZAI1-ZL-I (J1))
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$242,911
Indirect Cost
$41,741
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Fulton, Benjamin O; Sun, Weina; Heaton, Nicholas S et al. (2018) The Influenza B Virus Hemagglutinin Head Domain Is Less Tolerant to Transposon Mutagenesis than That of the Influenza A Virus. J Virol 92:
Pardi, Norbert; Hogan, Michael J; Naradikian, Martin S et al. (2018) Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 215:1571-1588
Coughlan, Lynda; Palese, Peter (2018) Overcoming Barriers in the Path to a Universal Influenza Virus Vaccine. Cell Host Microbe 24:18-24
Krammer, Florian; Fouchier, Ron A M; Eichelberger, Maryna C et al. (2018) NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines? MBio 9:
Chen, Yao-Qing; Wohlbold, Teddy John; Zheng, Nai-Ying et al. (2018) Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell 173:417-429.e10
Henry, Carole; Palm, Anna-Karin E; Krammer, Florian et al. (2018) From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 39:70-79
Broecker, Felix; Liu, Sean T H; Sun, Weina et al. (2018) Immunodominance of Antigenic Site B in the Hemagglutinin of the Current H3N2 Influenza Virus in Humans and Mice. J Virol 92:
Nachbagauer, Raffael; Shore, David; Yang, Hua et al. (2018) Broadly Reactive Human Monoclonal Antibodies Elicited following Pandemic H1N1 Influenza Virus Exposure Protect Mice against Highly Pathogenic H5N1 Challenge. J Virol 92:
Pardi, Norbert; Parkhouse, Kaela; Kirkpatrick, Ericka et al. (2018) Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat Commun 9:3361
Wang, Taia T; Bournazos, Stylianos; Ravetch, Jeffrey V (2018) Immunological responses to influenza vaccination: lessons for improving vaccine efficacy. Curr Opin Immunol 53:124-129

Showing the most recent 10 out of 80 publications