We have been interested in defining the major mechanisms of simultaneous resistance of cancer cells to multiple chemotherapeutic agents. One major mechanism is expression of an energy-dependent efflux pump, termed P-glycoprotein (P-gp), or the multidrug transporter, encoded in humans by the MDR1 gene. The sequence of the MDR1 cDNA led to a model of the transporter as a pump with 12 transmembrane domains and 2 ATP sites; determination of the domains of P-gp responsible for substrate binding and coupling of ATPase activity to substrate transport are the major goals of our work. Model systems based on stable expression or transient expression of mutated P-gps by a vaccinia virus expression system have been developed to assay functional effects of these mutations on drug binding, drug-dependent ATPase, drug resistance and drug transport. Substitution of all known phosphorylation sites in P-gp with either Ala or Asp does not affect ability of P-gp to confer multidrug resistance. The creation of bicistronic retroviral expression vectors able to confer multidrug resistance has enabled the development of vectors for treatment of other genetic diseases such as Fabry disease, Gaucher disease, chronic granulomatous disease, X-linked severe combined immunodeficiency and adenosine deaminase deficiency. In these vectors, P-gp serves as a dominant selectable marker. These vectors may be delivered to bone marrow stem cells grown ex vivo or complexed to liposomes in vivo. We have also begun to explore the mechanism of multidrug resistance resulting from selection in cisplatin of hepatoma cells and KB adenocarcinoma cells. Cisplatin-resistant hepatoma and KB cells are cross-resistant to methotrexate, arsenite and antimonite and accumulate reduced amounts of these toxic agents.
Kannan, Pavitra; Pike, Victor W; Halldin, Christer et al. (2013) Factors that limit positron emission tomography imaging of p-glycoprotein density at the blood-brain barrier. Mol Pharm 10:2222-9 |
Kannan, Pavitra; Brimacombe, Kyle R; Kreisl, William C et al. (2011) Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal amplification in PET. Proc Natl Acad Sci U S A 108:2593-8 |
Shomron, Noam; Hamasaki-Katagiri, Nobuko; Hunt, Ryan et al. (2010) A splice variant of ADAMTS13 is expressed in human hepatic stellate cells and cancerous tissues. Thromb Haemost 104:531-5 |
Kannan, Pavitra; Brimacombe, Kyle R; Zoghbi, Sami S et al. (2010) N-desmethyl-loperamide is selective for P-glycoprotein among three ATP-binding cassette transporters at the blood-brain barrier. Drug Metab Dispos 38:917-22 |
Gillet, Jean-Pierre; Macadangdang, Benjamin; Fathke, Robert L et al. (2009) The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 542:5-54 |
Paterson, Jill K; Gottesman, Michael M (2007) P-Glycoprotein is not present in mitochondrial membranes. Exp Cell Res 313:3100-5 |
Kimchi-Sarfaty, Chava; Marple, Andrew H; Shinar, Shiri et al. (2007) Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics 8:29-39 |
Sauna, Zuben E; Kimchi-Sarfaty, Chava; Ambudkar, Suresh V et al. (2007) The sounds of silence: synonymous mutations affect function. Pharmacogenomics 8:527-32 |
Gottesman, Michael M; Ling, Victor (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580:998-1009 |
Szakacs, Gergely; Paterson, Jill K; Ludwig, Joseph A et al. (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219-34 |
Showing the most recent 10 out of 48 publications