Resistance to chemotherapy occurs in cancer cells because of intrinsic or acquired changes in expression of specific proteins. We have studied resistance to natural product chemotherapeutic agents such as doxorubicin, Vinca alkaloids, and taxol. In most cases, cells become simultaneously resistant to multiple drugs because of reductions in intracellular drug concentrations. For the natural product drugs, this cross-resistance is frequently due to expression of an energy-dependent drug efflux system (ABC transporter) known as P-glycoprotein (P gp), the product of the MDR 1 or ABCB 1 gene, or to other members of the ABC transporter family. To explore the possibility that other members of the ABC family of transporters may be involved in drug resistance in cancer, we have developed real-time polymerase chain reaction (PCR) for detection of most of the 48 known ABC transporters; these techniques have been used to correlate expression of novel ABC transporters in cancer cell lines of known drug resistance. Expression of approximately 30 ABC transporters has been shown to correlate with resistance to specific cytotoxic drugs. Transfection of several of these transporters has confirmed that they confer resistance to the drugs detected in the correlation studies. Furthermore, this analysis has revealed that some drugs are more toxic to P-gp-expressing cells than to non-expressors, suggesting a novel approach to treatment of multi-drug resistant (MDR) cancers. Several different chemical classes with this property, including thiosemicarbazides, have been identified. One compound, NSC73306, has been studied in detail and shown to kill P-gp-expressing cells with high specificity by blocking these cells in S phase. Surviving cells do not express P-gp and are sensitive to chemotherapy with natural product drugs such as anthracyclines, paclitaxel and Vinca alkaloids. A quantitative structure activity analysis of NSC73306 analogs has yielded several additional compounds with a similar ability to kill P-gp-expressing cells, but improved solubility properties. Technology enabling a high-throughput screen for new agents that are substrates, inhibitors or specifically kill P-gp-expressing cells has been developed. Studies on the normal function of P-gp suggest that it is involved in normal uptake and distribution of many drugs. Common polymorphic variants of P-gp have been detected, but coding polymorphisms do not appear to alter the drug transport functions of P-gp. However, a synonymous polymorphism (C3435T, no amino acid change) in the setting of a specific P-gp haplotype can affect efficiency of P-gp pumping by altering the rhythm of protein folding and changing substrate and inhibitor interactions with P-gp. This haplotype appears to change mRNA folding, and cause a major translational delay which results in altered conformation of P-gp. Use of the MDR 1 gene as a dominant selectable marker in gene therapy has focused on the development of SV40 as a vector for delivery of MDR 1. Using recombinant SV40 capsid proteins, it is possible to package DNA and RNA in vitro . In particular, siRNA and chemically modified siRNAs can be delivered with high efficiency and at much lower concentrations than are needed for lipofection. Delivery of toxic DNAs, such as Pseudomonas exotoxin cDNA, can be used to target cancers in vitro and in mouse xenoplant models.
Showing the most recent 10 out of 48 publications