Direct evidence indicates that both Abs and CD8+ T cells contribute to restriction of simian immunodeficiency virus (SIV) replication. In the case of CD4+ T cells, however, it has been difficult to ascertain their contribution as they are also the target for viral infection. SIVmac251 infection of macaques is an excellent model whereby to assess these questions. Our lab and others demonstrated that preventive vaccination delays SIV disease in macaques. Cross-sectional studies performed in our infected macaques defined cell-mediated immune response in effector or privileged sites, and prospective studies with optimized T cell vaccines addressed immune correlates of protection from disease. We showed that a combination of DNA and a highly recombinant poxvirus-based SIV vaccine (NYVAC) is superior to NYVAC-SIV alone and that CD8+ central memory T cells (TCM) but not cytotoxic T lymphocytes (CTLs) inversely correlate with protection from disease. Importantly, we provided the first evidence that virus-specific CD4+ T cells also inversely correlate with low levels of primary and chronic viremia. Our next studies demonstrated that the breadth of immune response is important and that antigens encoded by nonstructural viral proteins contribute to protection. As preventive vaccination with T cell vaccines ameliorated the virological outcome following viral challenge, we explored strategies to augment virus-specific immune responses in already infected macaques treated with antiretroviral therapy (ART). We demonstrated in two independent studies that vaccination of SIV-infected ART-treated macaques with either ALVAC-SIV-based or NYVAC-SIV-based vaccines resulted in better control of viral replication after ART interruption. These studies provide the proof of concept to explore therapeutic vaccination approaches in HIV-1-infected individuals. Over the years, our preclinical data provided proof of principle for the initiation and continuation of human trials. ALVAC-HIV-based vaccine candidates are now in a phase III trial in adults in Thailand and a phase I trial in neonates in Uganda is being prepared. The combination of DNA plus NYVAC-HIV will be tested by EuroVac in healthy volunteers. Lastly, therapeutic phase I and II trials with ALVAC-HIV are ongoing at several sites and I plan to perform a phase I therapeutic trial with NYVAC-HIV in the U.S. The induction of poxvirus-specific immunity limits repeated exposure to these viral vectors. How the quality and extent of the vector-induced cellular immune response integrate with the immune response to the transgene has not been fully elucidated. Therefore, we initiated studies in macaques to define the immune responses that limit vaccinia and related poxvirus replication. A surprising byproduct of these studies, highly relevant to the national bioterrorism prevention effort, was the finding that SIV-infected immune-compromised macaques could be vaccinated safely with the smallpox vaccine Dryvax when a highly attenuated poxvirus was used as a prime but nonetheless were not protected against a monkeypox challenge exposure. We demonstrated that Abs alone but not cell-mediated responses conferred protection, and IgM to IgG switching was impaired in conditions of severe CD4+ T cell depletion. These data shed light on the mechanisms of protection of a vaccine that has eradicated a human viral pathogen, and they suggest that, even if HIV-1 immunogens able to induce neutralizing Abs to HIV primary isolates were available, their therapeutic effect in immune-compromised individuals would be limited.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC005688-16
Application #
7337920
Study Section
Vector Biology Study Section (VB)
Project Start
Project End
Budget Start
Budget End
Support Year
16
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Gordon, Shari N; Liyanage, Namal P M; Doster, Melvin N et al. (2016) Boosting of ALVAC-SIV Vaccine-Primed Macaques with the CD4-SIVgp120 Fusion Protein Elicits Antibodies to V2 Associated with a Decreased Risk of SIVmac251 Acquisition. J Immunol 197:2726-37
Gordon, Shari N; Doster, Melvin N; Kines, Rhonda C et al. (2014) Antibody to the gp120 V1/V2 loops and CD4+ and CD8+ T cell responses in protection from SIVmac251 vaginal acquisition and persistent viremia. J Immunol 193:6172-83
Gordon, Shari N; Cecchinato, Valentina; Andresen, Vibeke et al. (2011) Smallpox vaccine safety is dependent on T cells and not B cells. J Infect Dis 203:1043-53
Cecchinato, Valentina; Franchini, Genoveffa (2010) Th17 cells in pathogenic simian immunodeficiency virus infection of macaques. Curr Opin HIV AIDS 5:141-5
Herbeuval, Jean-Philippe; Nilsson, Jakob; Boasso, Adriano et al. (2009) HAART reduces death ligand but not death receptors in lymphoid tissue of HIV-infected patients and simian immunodeficiency virus-infected macaques. AIDS 23:35-40
Boasso, Adriano; Vaccari, Monica; Fuchs, Dietmar et al. (2009) Combined effect of antiretroviral therapy and blockade of IDO in SIV-infected rhesus macaques. J Immunol 182:4313-20
Vaccari, Monica; Mattapallil, Joseph; Song, Kaimei et al. (2008) Reduced protection from simian immunodeficiency virus SIVmac251 infection afforded by memory CD8+ T cells induced by vaccination during CD4+ T-cell deficiency. J Virol 82:9629-38
Petrovas, Constantinos; Price, David A; Mattapallil, Joseph et al. (2007) SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood 110:928-36
Hryniewicz, Anna; Price, David A; Moniuszko, Marcin et al. (2007) Interleukin-15 but not interleukin-7 abrogates vaccine-induced decrease in virus level in simian immunodeficiency virus mac251-infected macaques. J Immunol 178:3492-504
Pal, Ranajit; Venzon, David; Santra, Sampa et al. (2006) Systemic immunization with an ALVAC-HIV-1/protein boost vaccine strategy protects rhesus macaques from CD4+ T-cell loss and reduces both systemic and mucosal simian-human immunodeficiency virus SHIVKU2 RNA levels. J Virol 80:3732-42

Showing the most recent 10 out of 27 publications