Engagement of multicomponent immunoreceptors such as the T cell antigen receptor (TCR) results in rapid activation of multiple protein tyrosine kinases (PTKs) including Lck, Fyn, ZAP-70 and Itk. Our studies have focused on two substrates of these PTKs, LAT (linker for activation of T cells) and Cbl. LAT is a 36-38kD integral membrane protein. We have been able to purify this molecule, and have cloned the cDNA that encodes it. We have performed studies to characterize how LAT is phosphorylated and binds a number of critical signaling molecules, thus bringing these adaptor molecules and enzymes to the plasma membrane in the vicinity of the activated TCR. Two independently derived mutants of the Jurkat human T cell line have been shown to be deficient in LAT. TCR crosslinking in these cells fails to result in any indication of T cell activation. However, reconstitution of LAT completely restores TCR-mediated activation in these cells, thus demonstrating the importance of this molecule for TCR signaling. LAT-deficient mice have also been generated using standard gene targeting procedures. T cell development in these mice is blocked at an early stage within the thymus. Thus this complex developmental pathway is also dependent on LAT. Three other cell types, mast cells, NK cells and platelets, express the LAT protein. Mast cells derived from the LAT-deficient mice develop normally. However engagement of the mast cell immunoreceptor, Fc""""""""Symbol""""""""eRI, fails to induce optimal degranulation or cytokine production. NK cells and platelets also demonstrate a dependence on LAT. The cytotoxic activity of some NK clones can be blocked by dominant negative LAT expression, and platelet function mediated by the platelet GPVI receptor fails to occur in LAT-deficient platelets. Current studies on LAT function focus on the role of individual tyrosine residues. Tyrosine to phenylalanine mutations have been introduced, and these mutant molecules have been re-expressed into LAT-deficient cells and mice. One other critical PTK substrate in T cells is the Cbl molecule. Studies this year have demonstrated that it regulates T cell activity in a unique fashion. One of its structural features, an SH2 domain, binds to tyrosine phosphorylated PTKs, while another domain, a ring finger, appears to be involved in PTK down-regulation. Forms of Cbl that contain mutations in the ring finger, when expressed in T cells are activating. Our studies indicate that these mutations thus have a dominant negative effect on PTK regulation.(Project Number Z01-HD-01600-14 CBMB was transferred from CBMB, NICHD to LCMB, NCI)

National Institute of Health (NIH)
Division of Basic Sciences - NCI (NCI)
Intramural Research (Z01)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Basic Sciences
United States
Zip Code
Sherman, Eilon; Barr, Valarie; Manley, Suliana et al. (2011) Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35:705-20
Miyaji, Michihiko; Kortum, Robert L; Surana, Rishi et al. (2009) Genetic evidence for the role of Erk activation in a lymphoproliferative disease of mice. Proc Natl Acad Sci U S A 106:14502-7
Kortum, Robert L; Samelson, Lawrence E (2009) Priming the pump: adhesion enhances T cell antigen receptor-induced signaling. Immunity 30:3-5
Bunnell, Stephen C; Singer, Andrew L; Hong, David I et al. (2006) Persistence of cooperatively stabilized signaling clusters drives T-cell activation. Mol Cell Biol 26:7155-66
Barr, Valarie A; Balagopalan, Lakshmi; Barda-Saad, Mira et al. (2006) T-cell antigen receptor-induced signaling complexes: internalization via a cholesterol-dependent endocytic pathway. Traffic 7:1143-62
Braiman, Alex; Barda-Saad, Mira; Sommers, Connie L et al. (2006) Recruitment and activation of PLCgamma1 in T cells: a new insight into old domains. EMBO J 25:774-84
Houtman, Jon C D; Yamaguchi, Hiroshi; Barda-Saad, Mira et al. (2006) Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13:798-805
Desiere, Frank; Deutsch, Eric W; Nesvizhskii, Alexey I et al. (2005) Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol 6:R9
Sommers, Connie L; Lee, Jan; Steiner, Kevin L et al. (2005) Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. J Exp Med 201:1125-34
Houtman, Jon C D; Houghtling, Richard A; Barda-Saad, Mira et al. (2005) Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J Immunol 175:2449-58

Showing the most recent 10 out of 39 publications