Engagement of multicomponent immunoreceptors such as the T cell antigen receptor (TCR) results in rapid activation of multiple protein tyrosine kinases (PTKs) including Lck, Fyn, ZAP-70 and Itk. These PTKs then phosphorylate a number of enzymes and adapter molecules involved in a complex signaling cascade. Our studies have focused on a critical substrate of the PTKs, LAT (linker for activation of T cells), a 36-38kD integral membrane protein. We previously cloned the cDNA that encodes LAT and have performed studies to characterize how LAT is phosphorylated and binds a number of critical signaling molecules, thus bringing these adaptor molecules and enzymes to the plasma membrane in the vicinity of the activated TCR. Biochemical and biophysical techniques are currently employed to study the physical characteristics of LAT-based signaling complexes. LAT-deficient mice were generated using standard gene targeting procedures. T cell development in these mice is blocked at an early stage within the thymus. Thus this complex developmental pathway is also dependent on LAT. More recent studies on LAT function in vivo focus on the role of individual tyrosine residues. Tyrosine to phenylalanine mutations have been introduced into the murine germline. These studies reveal that within the LAT molecule the four distal tyrosines are required for normal T cell development. Interestingly when one particular tyrosine at position 136 is replaced by phenylalanine, thymocyte developed is partially blocked and a striking immunoproliferative disease develops within a month of birth. These mice are being using to study the mechanism of positive and negative selection. In addition to specific studies of the LAT molecule the laboratory has developed new methods of visualizing T cell activation using confocal microscopy. Many of the signaling molecules involved in the early TCR-coupled activation process have been tagged with fluorescent markers. Their recruitment to the site of T cell activation and formation of signaling clusters has been followed. Extensive analyses of the regulation of signaling complexes are underway. Molecules regulating actin polymerization and calcium homeostasis are under investigation using these methods.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010304-06
Application #
7049836
Study Section
(LCMB)
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2004
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Sherman, Eilon; Barr, Valarie; Manley, Suliana et al. (2011) Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35:705-20
Miyaji, Michihiko; Kortum, Robert L; Surana, Rishi et al. (2009) Genetic evidence for the role of Erk activation in a lymphoproliferative disease of mice. Proc Natl Acad Sci U S A 106:14502-7
Kortum, Robert L; Samelson, Lawrence E (2009) Priming the pump: adhesion enhances T cell antigen receptor-induced signaling. Immunity 30:3-5
Bunnell, Stephen C; Singer, Andrew L; Hong, David I et al. (2006) Persistence of cooperatively stabilized signaling clusters drives T-cell activation. Mol Cell Biol 26:7155-66
Barr, Valarie A; Balagopalan, Lakshmi; Barda-Saad, Mira et al. (2006) T-cell antigen receptor-induced signaling complexes: internalization via a cholesterol-dependent endocytic pathway. Traffic 7:1143-62
Braiman, Alex; Barda-Saad, Mira; Sommers, Connie L et al. (2006) Recruitment and activation of PLCgamma1 in T cells: a new insight into old domains. EMBO J 25:774-84
Houtman, Jon C D; Yamaguchi, Hiroshi; Barda-Saad, Mira et al. (2006) Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13:798-805
Desiere, Frank; Deutsch, Eric W; Nesvizhskii, Alexey I et al. (2005) Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol 6:R9
Sommers, Connie L; Lee, Jan; Steiner, Kevin L et al. (2005) Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. J Exp Med 201:1125-34
Houtman, Jon C D; Houghtling, Richard A; Barda-Saad, Mira et al. (2005) Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J Immunol 175:2449-58

Showing the most recent 10 out of 39 publications