We have employed two genome technologies in Saccharomyces cerevisiae to determine the cellular impact and possible mechanisms involved in arsenic toxicity and carcinogenicity. By combining transcript profiling with the screening of a comprehensive panel of bar-coded mutant strains, we have identified the genes and pathways most affected by this metalloid.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES101584-01
Application #
6828637
Study Section
(LMB)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2003
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Wielgus, Albert R; Chignell, Colin F; Miller, David S et al. (2007) Phototoxicity in human retinal pigment epithelial cells promoted by hypericin, a component of St. John's wort. Photochem Photobiol 83:706-13
Bammler, Theodore; Beyer, Richard P; Bhattacharya, Sanchita et al. (2005) Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2:351-6
Haugen, Astrid C; Kelley, Ryan; Collins, Jennifer B et al. (2004) Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol 5:R95
Karthikeyan, Gopalakrishnan; Santos, Janine H; Graziewicz, Maria A et al. (2003) Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum Mol Genet 12:3331-42
Waters, Michael; Boorman, Gary; Bushel, Pierre et al. (2003) Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. EHP Toxicogenomics 111:15-28