All eyes show an association of photoreceptors with dark pigment. In vertebrates, this association can be traced back to the action of the bHLH-Zip transcription factor MITF, which controls the generation of melanin-bearing pigment cells, and the paired-domain transcription factor PAX6, which controls the generation of photoreceptors in the retina. High level expression of these transcription factors is usually mutually exclusive, except in the neuroepithelium-derived retinal pigment epithelium (RPE) where they are co-expressed during development. We approached the question of the role of PAX6 in the RPE genetically, using a variety of mouse Mitf and Pax6 alleles individually and in combinations. The results show that a reduction in the level of functional PAX6 protein exacerbates the dorsal RPE-to-retina transition normally associated with Mitf mutations, and that overexpression of PAX6 protein from a yeast artificial chromosome transgene alleviates this Mitf-mediated RPE-to-retina transition. Hence, the results suggest that in the RPE, Pax6 has an anti-retinogenic role, in contrast to its pro-retinogenic role in the retina. To address the question of the molecular pathways involved in this anti-retinogenic activity of Pax6, we use a candidate gene approach, employing RT-PCR to obtain temporal and spatial gene expression data at the mRNA level and immunocytochemistry to obtain corresponding data at the protein level. Moreover, we use chromatin immunoprecipitation procedures on dissected embryonic eye tissues to establish transcription factor interactions with the regulatory regions of potential target genes. These studies should help us to determine the molecular mechanisms of RPE versus retina development and give insights into the evolutionarily conserved use of Mitf and Pax6 and its homologs in eye development from jellyfish to man.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002790-20
Application #
7735262
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
20
Fiscal Year
2008
Total Cost
$838,191
Indirect Cost
City
State
Country
United States
Zip Code
Bauer, Georg L; Praetorius, Christian; Bergsteinsdottir, Kristin et al. (2009) The role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue. Genetics 183:581-94
Bharti, Kapil; Liu, Wenfang; Csermely, Tamas et al. (2008) Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development 135:1169-78
Lee, Ji-Yeon; Muenzberg, Heike; Gavrilova, Oksana et al. (2008) Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity. PLoS ONE 3:e1639
Bismuth, Keren; Skuntz, Susan; Hallsson, Jon H et al. (2008) An unstable targeted allele of the mouse Mitf gene with a high somatic and germline reversion rate. Genetics 178:259-72
Puligilla, Chandrakala; Feng, Feng; Ishikawa, Kotaro et al. (2007) Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev Dyn 236:1905-17
Arnheiter, Heinz (2007) Mammalian paramutation: a tail's tale? Pigment Cell Res 20:36-40
Bharti, Kapil; Nguyen, Minh-Thanh T; Skuntz, Susan et al. (2006) The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res 19:380-94
Chang, Lan; Blain, Delphine; Bertuzzi, Stefano et al. (2006) Uveal coloboma: clinical and basic science update. Curr Opin Ophthalmol 17:447-70
Murakami, Hideki; Arnheiter, Heinz (2005) Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res 18:265-77
Horsford, D Jonathan; Nguyen, Minh-Thanh T; Sellar, Grant C et al. (2005) Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development 132:177-87

Showing the most recent 10 out of 24 publications