IIn schistosomiasis, the pathology resulting from chronic infection is predominantly induced by the host immune response to parasite eggs that are laid, in the case of Schistosoma mansoni, in the portal venous system and subsequently trapped in the liver and intestine. The egg induced granulomatous response eventually triggers significant liver fibrosis, which is the primary cause of chronic morbidity and mortality. Our work is focused on elucidating the mechanisms of granulomatous inflammation and fibrosis. Progress was made in the following areas:

 1) IL-13 is required for immunity to many helminth infections. IL-13 signals via the type-II IL-4 receptor, a heterodimeric receptor of IL-13Rα1 and IL-4Rα, which is also used by IL-4. IL-13 also binds to IL-13Rα2, but with much higher affinity than the type-II IL-4 receptor. Binding of IL-13 to IL-13Rα2 has been shown to attenuate IL-13 signaling through the type-II IL-4 receptor. However, molecular determinants that dictate the specificity and affinity of mouse IL-13 for the different receptors are largely unknown. Here, we used high-density overlapping peptide arrays, structural modeling, and molecular docking methods to map IL-13 binding sequences on its receptors. Predicted binding sequences on mouse IL-13Rα1 and IL-13Rα2 were in agreement with the reported human IL-13 receptor complex structures and site-directed mutational analysis. Novel structural differences were identified between IL-13 receptors, particularly at the IL-13 binding interface. Notably, additional binding sites were observed for IL-13 on IL-13Rα2. In addition, the identification of peptide sequences that are unique to IL-13Rα1 allowed us to generate a monoclonal antibody that selectively binds IL-13Rα1. Thus, high-density peptide arrays combined with molecular docking studies provide a novel, rapid, and reliable method to map cytokine-receptor interactions that may be used to generate signaling and decoy receptor-specific antagonists that could be used to block schistosomiasis-induced liver fibrosis. 2) Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4+CD44+CD25+GITR+ lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni.

Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
2011
Total Cost
$1,396,316
Indirect Cost
City
State
Country
Zip Code
Palacios-Macapagal, Daphne; Connor, Jane; Mustelin, Tomas et al. (2017) Cutting Edge: Eosinophils Undergo Caspase-1-Mediated Pyroptosis in Response to Necrotic Liver Cells. J Immunol 199:847-853
Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M et al. (2017) T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions. J Biol Chem 292:15-30
Vannella, Kevin M; Ramalingam, Thirumalai R; Hart, Kevin M et al. (2016) Acidic chitinase primes the protective immune response to gastrointestinal nematodes. Nat Immunol 17:538-44
Soucy, Katie; Fairhurst, Rick M; Lynn, Geoffrey M et al. (2016) Breaking the Mold: Partnering with the National Institutes of Health Intramural Research Program to Accelerate PhD Training. Trends Immunol 37:813-815
Sun, Rex; Urban Jr, Joseph F; Notari, Luigi et al. (2016) Interleukin-13 Receptor ?1-Dependent Responses in the Intestine Are Critical to Parasite Clearance. Infect Immun 84:1032-1044
Ramalingam, Thirumalai R; Gieseck, Richard L; Acciani, Thomas H et al. (2016) Enhanced protection from fibrosis and inflammation in the combined absence of IL-13 and IFN-?. J Pathol 239:344-54
Gieseck 3rd, Richard L; Ramalingam, Thirumalai R; Hart, Kevin M et al. (2016) Interleukin-13 Activates Distinct Cellular Pathways Leading to Ductular Reaction, Steatosis, and Fibrosis. Immunity 45:145-58
Wynn, Thomas A; Vannella, Kevin M (2016) Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 44:450-462
Borthwick, L A; Barron, L; Hart, K M et al. (2016) Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol 9:38-55
Tacke, Frank; Wynn, Thomas A (2015) Biomarker and Therapeutic Potential of CSF1 in Acute Liver Failure. Gastroenterology 149:1675-8

Showing the most recent 10 out of 60 publications