Brainstem noradrenergic neurons comprise a small yet diverse population of cells that project to virtually all areas of the central nervous system. Through the release of norepinephrine, these neurons modulate functions as diverse as attention, emotion, appetite, memory, and responseto stress. Consistent with this functional diversity, norepinephrine signaling is disrupted in a spectrum of neurodegenerative and neurodevelopmental disorders, and following exposure to a number of environmental toxicants. Interestingly, it has been observed that subpopulations of noradrenergic neurons are differentially susceptible to disease and following exposure to certain toxicants. Given these observations, we suspect that the key to understanding noradrenergic system dysfunction will not be found by focusing on the system as a whole. Rather, this phenotypic complexity will only be understood by uncovering the developmental and genetic factors that define unique functional subtypes of noradrenergic neurons. In pursuit of this goal, we investigate the development, organization, and function of genetically defined subsets of noradrenergic neurons in the mouse central nervous system. Our central hypothesis is that genetic and environmental perturbation of distinct noradrenergic neuron subtypes early in development result in enhanced susceptibility to cognitive and affective disorders later in life. To address this hypothesis, we generate and utilize cutting-edge mouse models to: 1) identify molecularly distinct subsets of noradrenergic neurons; 2) determine their structural organization; 3) determine their role in modulating stress-related behaviors and learning; and 4) perturb their function to uncover critical periods of noradrenergic neuron development and the long-term effect of these perturbations on structure and function.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Plummer, Nicholas W; Ungewitter, Erica K; Smith, Kathleen G et al. (2017) A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch. Genesis 55:
Plummer, Nicholas W; Scappini, Erica L; Smith, Kathleen G et al. (2017) Two Subpopulations of Noradrenergic Neurons in the Locus Coeruleus Complex Distinguished by Expression of the Dorsal Neural Tube Marker Pax7. Front Neuroanat 11:60
Plummer, Nicholas W; de Marchena, Jacqueline; Jensen, Patricia (2016) A knock-in allele of En1 expressing dre recombinase. Genesis 54:447-54
Damborsky, Joanne C; Smith, Kathleen G; Jensen, Patricia et al. (2016) Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Struct Funct :
Robertson, Sabrina D; Plummer, Nicholas W; Jensen, Patricia (2016) Uncovering diversity in the development of central noradrenergic neurons and their efferents. Brain Res 1641:234-44
Sciolino, Natale R; Plummer, Nicholas W; Chen, Yu-Wei et al. (2016) Recombinase-Dependent Mouse Lines for Chemogenetic Activation of Genetically Defined Cell Types. Cell Rep 15:2563-73
Plummer, Nicholas W; Evsyukova, Irina Y; Robertson, Sabrina D et al. (2015) Expanding the power of recombinase-based labeling to uncover cellular diversity. Development 142:4385-93
Robertson, Sabrina D; Plummer, Nicholas W; de Marchena, Jacqueline et al. (2013) Developmental origins of central norepinephrine neuron diversity. Nat Neurosci 16:1016-23
Bang, Sun Jung; Jensen, Patricia; Dymecki, Susan M et al. (2012) Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci 35:85-96