The endosomal pathway is a highly compartmentalized system comprising numerous membrane-bound organelles, which provides precise spatial and temporal regulation of various physiological processes. The luminal composition of the endosomal organelles is crucial for proper endosomal function. Luminal acidification is essential for the delivery and degradation of internalized ligands in lysosomes, while release of calcium from endosomes and lysosomes is required for various steps of intracellular trafficking, including fusion and fission events. We are interesting in understanding the role of TRP channels in the regulation of the ionic composition of endocytic organelles and their participation in intracellular trafficking, signal transduction, and ion homeostasis. Mucolipins (or TRPMLs) constitute a family of endosomal cation channels with homology to the transient receptor potential superfamily. In mammals, the mucolipin family includes three members, mucolipin-1, -2, and -3 (MCOLN1-3). MCOLN1 is the best-characterized member of the family due to the fact that mutations in this protein are associated with a human disease known as mucolipidosis type IV (MLIV). We and others have shown that the primary role of MCOLN1 in cells is to mediate calcium efflux from late endosomes and lysosomes, thus promoting organelle fusion and regulating endosomal trafficking. Gain-of-function mutation in MCOLN3 causes the varitint-waddler (Va) phenotype in mice, which is characterized by hearing loss, vestibular dysfunction, and coat color dilution. The Va phenotype results from a punctual mutation (A419P) in the pore region of MCOLN3 that locks the channel in an open conformation causing massive entry of calcium inside cells and inducing cell death by apoptosis. Overexpression of wild-type MCOLN3 produces severe alterations of the endosomal pathway, including enlargement and clustering of endosomes, delayed EGF receptor degradation, and impaired autophagosome maturation, thus suggesting that MCOLN3 plays an important role in the regulation of endosomal function. To understand better the physiological role of MCOLN3, we inhibited MCOLN3 function by expression of a channel-dead dominant negative mutant (458DD/KK) or by knockdown of endogenous MCOLN3 and measure several endosomal parameters including luminal calcium, pH, and endosomal fusion. We found impairment of MCOLN3 activity caused a significant accumulation of luminal calcium at endosomes. This accumulation led to severe defects in endosomal acidification as well as to increased endosomal fusion. Our findings reveal a prominent role for MCOLN3 in regulating calcium homeostasis at the endosomal pathway and confirm the importance of luminal calcium for proper acidification and membrane trafficking. The cellular function of MCOLN2 is far less characterized. To address MCOLN2 function in a physiologically relevant cell type, we first analyzed MCOLN2 expression in different mouse tissues and organs and found that it was predominantly expressed in lymphoid organs and kidney. Quantitative RT-PCR revealed tight regulation of MCOLN2 at the transcriptional level. While MCOLN2 expression was negligible in resting macrophages, its mRNA and protein levels dramatically increased in response to TLR activation both in vitro and in vivo. Conversely, MCOLN1 and MCOLN3 levels did not change upon TLR activation. Immunofluorescence analysis demonstrated that endogenous MCOLN2 primarily localized to recycling endosomes both in culture and primary cells, in contrast with MCOLN1 and MCOLN3, which distribute to the late and early endosomal pathway, respectively. To better understand the in vivo function of MCOLN2, we generated a MCOLN2-knockout mouse. We found that the production of several chemokines, in particular CCL2, was severely reduced in MCOLN2-knockout mice. Furthermore, MCOLN2-knockout mice displayed impaired recruitment of peripheral macrophages in response to intra peritoneal (IP) injections of LPS and live bacteria, suggesting a potential defect in the immune response. Overall, our study reveals interesting differences in the regulation and distribution of the members of the MCOLN family and identifies a novel role for MCOLN2 in the innate immune response.

Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2016
Total Cost
Indirect Cost
Name
U.S. National Heart Lung and Blood Inst
Department
Type
DUNS #
City
State
Country
Zip Code
Choy, Christopher H; Saffi, Golam; Gray, Matthew A et al. (2018) Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. J Cell Sci 131:
Willett, Rose; Martina, José A; Zewe, James P et al. (2017) TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes. Nat Commun 8:1580
Ai, Teng; Willett, Rose; Williams, Jessica et al. (2017) N-(1-Benzyl-3,5-dimethyl-1H-pyrazol-4-yl)benzamides: Antiproliferative Activity and Effects on mTORC1 and Autophagy. ACS Med Chem Lett 8:90-95
Shang, Peng; Valapala, Mallika; Grebe, Rhonda et al. (2017) The amino acid transporter SLC36A4 regulates the amino acid pool in retinal pigmented epithelial cells and mediates the mechanistic target of rapamycin, complex 1 signaling. Aging Cell 16:349-359
Sun, Lu; Hua, Yinan; Vergarajauregui, Silvia et al. (2015) Novel Role of TRPML2 in the Regulation of the Innate Immune Response. J Immunol 195:4922-32
Abe, Ken; Puertollano, Rosa (2011) Role of TRP channels in the regulation of the endosomal pathway. Physiology (Bethesda) 26:14-22
Lelouvier, Benjamin; Puertollano, Rosa (2011) Mucolipin-3 regulates luminal calcium, acidification, and membrane fusion in the endosomal pathway. J Biol Chem 286:9826-32
Puertollano, Rosa; Kiselyov, Kirill (2009) TRPMLs: in sickness and in health. Am J Physiol Renal Physiol 296:F1245-54
Martina, Jose A; Lelouvier, Benjamin; Puertollano, Rosa (2009) The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 10:1143-56