Inflammation is accompanied by a substantial shift in tissue metabolism. One of the major metabolic signatures of inflammation is hypoxia, which is recently appreciated to significantly influence inflammatory disease outcome. Early in the disease process, such """"""""inflammatory hypoxia"""""""" results, in large extent, from the recruitment of oxygen demanding inflammatory cell types, particularly neutrophils. In recent years, we have focused on defining targets and molecular pathways set into motion by inflammatory hypoxia. Results from these studies have defined a series of novel signaling mechanisms in which hypoxia (both in vitro and in vivo) drives the metabolism of extracellular nucleotides toward the generation of large amounts of extracellular adenosine. Central to this pathway was the identification of hypoxia-inducible factor (HIF) as an important regulator of the enzymes necessary for Ado metabolism (esp. CD73), thus identifying HIF-regulated Ado production as an endogenous anti-inflammatory pathway. Ongoing studies have revealed that Ado regulates HIF through the active deneddylation of Cullins, a family of proteins critical for the recruitment of ubiquitin ligases. Based on these preliminary studies, we hypothesize that Ado generated early in the inflammatory response functions as a feed-forward anti- inflammatory mechanism through direct actions on mucosal HIF stabilization.
Three specific aims are directed at testing this hypothesis:
In Specific Aim 1, we will define the contribution of neutrophils and epithelia to Ado generation at sites of inflammation.
Specific Aim 2 will extend preliminary data to elucidate mechanisms of Ado-mediated Cullin-2 de-neddylation.
Specific Aim 3 will Probe the role of Ado to HIF-mediated protection. The overall aim of this proposal is to identify novel metabolic signaling by HIF and Ado within the mucosa during inflammatory hypoxia.

Public Health Relevance

This proposal aims at understanding the role of metabolism in mucosal inflammation such as that observed in inflammatory bowel disease (IBD). Results from the studies proposed here will go far to resolve a number of unanswered questions in the field of inflammation, including: What cell types contribute most significantly to the metabolic changes associated with inflammation? Are these metabolic changes protective or detrimental to the tissue? Can these metabolic changes be targeted for therapeutic benefit? Answers to these questions through experiments proposed here will provide an important foundation for which to integrate novel therapeutic approaches for mucosal inflammation.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Carrington, Jill L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Zheng, Leon; Kelly, Caleb J; Battista, Kayla D et al. (2017) Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2. J Immunol 199:2976-2984
Chun, Carlene; Zheng, Leon; Colgan, Sean P (2017) Tissue metabolism and host-microbial interactions in the intestinal mucosa. Free Radic Biol Med 105:86-92
Kao, Daniel J; Saeedi, Bejan J; Kitzenberg, David et al. (2017) Intestinal Epithelial Ecto-5'-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infect Immun 85:
Lanis, J M; Alexeev, E E; Curtis, V F et al. (2017) Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol 10:1133-1144
Hall, Caroline H T; Campbell, Eric L; Colgan, Sean P (2017) Neutrophils as Components of Mucosal Homeostasis. Cell Mol Gastroenterol Hepatol 4:329-337
Ehrentraut, Stefan F; Curtis, Valerie F; Wang, Ruth X et al. (2016) Perturbation of neddylation-dependent NF-?B responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation. Mol Biol Cell :
Kitzenberg, David; Colgan, Sean P; Glover, Louise E (2016) Creatine kinase in ischemic and inflammatory disorders. Clin Transl Med 5:31
Onyiah, Joseph C; Colgan, Sean P (2016) Cytokine responses and epithelial function in the intestinal mucosa. Cell Mol Life Sci 73:4203-4212
Colgan, Sean P; Campbell, Eric L; Kominsky, Douglas J (2016) Hypoxia and Mucosal Inflammation. Annu Rev Pathol 11:77-100
Glover, Louise E; Lee, J Scott; Colgan, Sean P (2016) Oxygen metabolism and barrier regulation in the intestinal mucosa. J Clin Invest 126:3680-3688

Showing the most recent 10 out of 52 publications