N.2: Project 2 Ovarian cancer is a lethal gynecologic malignancy and its development is poorly understood. We have performed four independent genome wide association studies (GWAS) in ovarian cancer and have identified highly significant, replicated single nucleotide polymorphisms (SNPs) associated with ovarian cancer risk. In Project 1, these GWAS will be combined to identify additional susceptibility loci and genetic variants associated with risk. Here we will evaluate the functional significance of candidate genes and SNPs at these loci.
The specific aims are as follows: 1. To evaluate the role of candidate genes at susceptibility loci in ovarian cancer. We will use bioinformatics tools to extract publicly available data describing a role for candidate genes in cancer. Next, we will assess differences in transcript/protein expression between ovarian cancer cell lines and primary tumours, and normal ovarian epithelia. Then we will determine whether candidate genes have acquired somatic genetic changes in primary ovarian cancers. 2. To determine the functional significance of candidate SNPs in the susceptibility regions. Bioinformatics tools will be employed to determine whether a SNP's DNA location can predict functional impact. We will also correlate SNP genotype and copy number variants (CNVs) with differential germline expression and methylation status. 3. To evaluate the role of candidate SNPs located distant from known Open Reading Frames. We expect several SNP associations to fall in """"""""gene deserts"""""""". Bioinformatics tools will be used to predict microRNAs or distant regulatory regions, and to identify conserved elements. We will look for functional evidence of regulatory elements correlated with SNP location using chromatin immunoprecipitation and sequencing analysis (ChlP-Seq). 4. To perform detailed functional characterization of candidate genes and SNPs. We will evaluate the biological significance of candidate genes using three-dimensional culture models of ovarian cancers and normal ovaries. We will modulate their expression using cDNA or shRNA expression mediated by lentlviral transduction. Bioinformatics predictions of SNP function will be tested using specific functional assays that will depend on the nature of the candidate gene and SNP. This will include mobility shift DNA binding, reporter and DNAse I hypersensitivity assays. The knowledge gained from this large collaborative study will significantly contribute to our understanding of the functional rationale underlying genetic susceptibility and survival in women diagnosed with ovarian cancer.

Public Health Relevance

Determining the functional mechanism for genetic variants that cause ovarian cancer will improve our understanding of the underlying biology of the disease. This will also enhance the ability to identify women at greatest risk, and potentially lead to the development of more effective, individualized therapies. The studies may also inform the research community about the cellular origins of epithelial ovarian cancers, which remains an unresolved clinical and research question.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-4)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
H. Lee Moffitt Cancer Center & Research Institute
United States
Zip Code
Lindström, Sara; Finucane, Hilary; Bulik-Sullivan, Brendan et al. (2017) Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiol Biomarkers Prev 26:1427-1435
Glubb, Dylan M; Johnatty, Sharon E; Quinn, Michael C J et al. (2017) Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci. Oncotarget 8:64670-64684
Phelan, Catherine M (see original citation for additional authors) (2017) Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet 49:680-691
Amos, Christopher I; Dennis, Joe; Wang, Zhaoming et al. (2017) The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers Prev 26:126-135
Zuber, Verena; Bettella, Francesco; Witoelar, Aree et al. (2017) Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer. BMC Genomics 18:270
Kar, Siddhartha P; Adler, Emily; Tyrer, Jonathan et al. (2017) Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. Br J Cancer 116:524-535
Milne, Roger L (see original citation for additional authors) (2017) Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet 49:1767-1778
Shimelis, Hermela; Mesman, Romy L S; Von Nicolai, Catharina et al. (2017) BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Res 77:2789-2799
Muranen, Taru A; Greco, Dario; Blomqvist, Carl et al. (2017) Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genet Med 19:599-603
Ugalde-Morales, Emilio; Li, Jingmei; Humphreys, Keith et al. (2017) Common shared genetic variation behind decreased risk of breast cancer in celiac disease. Sci Rep 7:5942

Showing the most recent 10 out of 131 publications