We hypothesize a critical factor for the immunopathogenesis of type 1 diabetes (T1D) is centered on dendritic cell (DC) maturation-based defects supporting the genesis of autoreactive T cells while impairing tolerance mechanisms requiring fully intact DC. Our studies in NOD mice provide a mechanism for DC maturation defects, heightened type 1 interferon (IFNa/(3) response. We find dysregulated IFNa/p signaling impacts maturation differentially. Working at the level of immature DC it blocks maturation while more mature cells DC become immunogenic. Our analysis of congenic mice demonstrates heightened IFNa/p signaling is present in the B6.NODc1c strain, suggesting /cfcf5 genes on chromosome 1 regulate this defect. We also find a second defect that compounds dysregulated IFNa/p responses. Our studies show both NOD and 11D subjects have significantly expanded plasmacytoid DC (PDC) that produce high levels of IFNa/p. Importantly, PDC are increased in NOD lymphoid tissues and are prominent in insulitis lesions. Furthermore, analysis of congenic mice suggests the PDC defect is regulated by genes within the chromosome 3 Idd10/17/18 region. To address this hypothesis and proposed mechanism for DCdysfunction we will;1.) Determine the relative roles of PDC and heightened IFNa/p signaling on DC maturation and function in vivo and their roles in the pathogenesis T1D using NOD, NOD.B6/dd5.7/5.2, NOD.IFNAR-/-, BQ.NODdc and NOD.Idd10/17/18 congenic mouse strains, 2.) Determine the effect of heightened IFNa/p signaling on NOD DC APC function, and assess the ldd5.1/5.2 contribution to this abnormality, 3.) Determine whether human T1D subjects manifest heightened IFNa/p signaling responses, further assess PDC numbers and PDC based-IFNa/p production, and in cooperation with Projects 1 &3, determine IFNa/p effects on immune function in vitro. The proposed studies may provide a mechanistic and immunogenetic basis for the association of viruses and with T1D pathogenesis and provide important new approaches to study environmental-immune interactions. Finally, these studies will potentially provide new methods to assess disease activity/susceptibility or risk e.g., PDC numbers in peripheral blood, levels of IFNa/p production, heightened IFNa/p signaling (increased phospho-STAT1/STAT2) and expression of IFNa/p target genes (MxA, IRF7) as well as new approaches to preventing T1D, e.g., blocking IFNa/p action

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Florida
United States
Zip Code
Chen, Yi-Guang; Mathews, Clayton E; Driver, John P (2018) The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 9:51
Kusmartseva, Irina; Beery, Maria; Philips, Tiffany et al. (2018) Hospital time prior to death and pancreas histopathology: implications for future studies. Diabetologia 61:954-958
Hu, Ronghua; Xia, Chang-Qing; Butfiloski, Edward et al. (2018) Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection. Clin Immunol 195:139-148
Smith, Mia J; Rihanek, Marynette; Wasserfall, Clive et al. (2018) Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles. Diabetes 67:697-703
Perry, Daniel J; Wasserfall, Clive H; Oram, Richard A et al. (2018) Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Sci Rep 8:4529
Ratiu, Jeremy J; Racine, Jeremy J; Hasham, Muneer G et al. (2017) Genetic and Small Molecule Disruption of the AID/RAD51 Axis Similarly Protects Nonobese Diabetic Mice from Type 1 Diabetes through Expansion of Regulatory B Lymphocytes. J Immunol 198:4255-4267
Delitto, Daniel; Delitto, Andrea E; DiVita, Bayli B et al. (2017) Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a Tumor-Tolerant Immune Microenvironment. Cancer Res 77:672-683
Posgai, Amanda L; Wasserfall, Clive H; Kwon, Kwang-Chul et al. (2017) Plant-based vaccines for oral delivery of type 1 diabetes-related autoantigens: Evaluating oral tolerance mechanisms and disease prevention in NOD mice. Sci Rep 7:42372
Sebastiani, Guido; Ventriglia, Giuliana; Stabilini, Angela et al. (2017) Regulatory T-cells from pancreatic lymphnodes of patients with type-1 diabetes express increased levels of microRNA miR-125a-5p that limits CCR2 expression. Sci Rep 7:6897
O'Kell, Allison L; Wasserfall, Clive; Catchpole, Brian et al. (2017) Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked? Diabetes 66:1443-1452

Showing the most recent 10 out of 117 publications