Airborne PCBs are those that have higher vapor pressures, lower chlorination, and should be substrates for metabolic activation. We hypothesize that the lower halogenated biphenyls are activated by hepatic enzymes to oxygenated species that are electrophilic and bind to proteins and DNA. Our preliminary data indeed show that PCBs are metabolized to electrophiles and free radicals that bind to cellular targets and that the metabolism of PCBs produces reactive oxygen species, resulting in DNA strand breaks and 8- oxodeoxyguanosine formation in DNA and that a quinone/semiquinone may be a/the major metabolite involved in these effects. Employing the Solt-Farber initiation-selection protocol, we also identified several lower chlorinated biphenyls as initiators of hepatocarcinogenesis in the rat. We therefore propose to extend our studies to: 1) determine the initiating potential of airborne, semi-volatile PCBs and to analyze the structural and metabolic requirements needed for carcinogenic potency, 2) analyze for oncogene mutations and karyoptypic changes during PCB carcinogenesis in the Solt-Farber experiments, 3) investigate the types of genotypic damage induced by PCBs and their metabolites in vitro, in cells in culture, and in vivo, 4) examine the ease of formation and the reactivity of PCB-derived semiquinone radicals, and 5) determine the biologic effects and the influence of Route of Exposure (IP vs. inhalation) of airborne PCBs (a typical """"""""air mixture"""""""" of PCBs, or single PCB congeners, or hydroxy-PCBs) on specific changes in expression of xenobiotic-metabolizing enzymes, antioxidant enzymes or redox indicators in the rat. Jointly these studies may explain why some PCBs are activated to genotoxins, while others are not, which target genes are involved, the nature of the DNA lesions, and the mutations that ensue. These data may also provide clues about whether nutritional or other interventions are warranted to protect highlyexposed humans. These mechanistic and susceptibility issues will form a basis for the quantitative human health risk assessment for these important Superfund Chemicals, arising from multiple sources.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013661-04
Application #
7795958
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
4
Fiscal Year
2009
Total Cost
$460,603
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
P?n?íková, Kate?ina; Brenerová, Petra; Svržková, Lucie et al. (2018) Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Environ Sci Pollut Res Int 25:16411-16419
Robertson, Larry W; Weber, Roland; Nakano, Takeshi et al. (2018) PCBs risk evaluation, environmental protection, and management: 50-year research and counting for elimination by 2028. Environ Sci Pollut Res Int 25:16269-16276
Klaren, William D; Vine, David; Vogt, Stefan et al. (2018) Spatial distribution of metals within the liver acinus and their perturbation by PCB126. Environ Sci Pollut Res Int 25:16427-16433
Tomsho, Kathryn S; Basra, Komal; Rubin, Staci M et al. (2018) Correction to: Community reporting of ambient air polychlorinated biphenyl concentrations near a Superfund site. Environ Sci Pollut Res Int 25:16401
Uwimana, Eric; Li, Xueshu; Lehmler, Hans-Joachim (2018) Human Liver Microsomes Atropselectively Metabolize 2,2',3,4',6-Pentachlorobiphenyl (PCB 91) to a 1,2-Shift Product as the Major Metabolite. Environ Sci Technol 52:6000-6008
Herkert, Nicholas J; Hornbuckle, Keri C (2018) Effects of room airflow on accurate determination of PUF-PAS sampling rates in the indoor environment. Environ Sci Process Impacts 20:757-766
Herkert, Nicholas J; Spak, Scott N; Smith, Austen et al. (2018) Calibration and evaluation of PUF-PAS sampling rates across the Global Atmospheric Passive Sampling (GAPS) network. Environ Sci Process Impacts 20:210-219
Dhakal, Kiran; Gadupudi, Gopi S; Lehmler, Hans-Joachim et al. (2018) Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environ Sci Pollut Res Int 25:16277-16290
Enayah, Sabah H; Vanle, Brigitte C; Fuortes, Laurence J et al. (2018) PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 394:93-101
Klinefelter, Kelsey; Hooven, Molly Kromme; Bates, Chloe et al. (2018) Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 29:112-127

Showing the most recent 10 out of 298 publications