(Taken from the Application): Demonstration of the power of structural genomics using it to address a significant problem in human health, the pathogenicity of Mycobacterium tuberculosis, is proposed. The structures of over 400 functionally important proteins from M. tuberculosis will be determined and analyzed. The database of structural and functional information to be constructed will form a basis for understanding M. tuberculosis pathogenesis and will enable structure-based design of novel drugs. The structures will include about 40 novel folds and 200 new structural families, providing a foundation for structure prediction of related proteins. To accomplish this, an approach has been developed that will deliver structures and analyses of high value in a cost-effective manner. Functionally important proteins will be targeted through the use of genetic screens and genome-scale functional assignments. The green-fluorescent, protein-based screening system will be used to optimize proteins for expression, solubility and methionine content. Crystallization will be carried out by a low-cost system that combines automation of their stochastic screening protocol with image analysis of droplets. Selenomethionine MAD X-ray data collection on characterized crystals at synchrotron facilities will be emphasized, with concurrent structure solution using automated software. Synchrotron time sufficient for collection of 300 MAD structures per year has been secured for this program. Structural data will be systematically analyzed for fold assignment, similarity to other proteins, and local motifs. Analysis of structures determined will use new function prediction methods that will guide biochemical tests of function. A consortium approach to structural genomics will be implemented that allows a world-wide effort to be focused on a defined set of targets. The Consortium for Structural Genomics consists of 24 laboratories from 13 institutions in 6 countries. Consortium laboratories are collectively responsible for 3.3 percent of all protein structures in the Protein Data Bank and have extensive records of methods development. Consortium members have carried out a pilot project on the structural genomics of a hyperthermophile that has identified bottlenecks and resulted in development of methodologies for high-throughput structure determination and analysis. The Consortium will have centralized facilities that will carry out an increasing fraction of routine tasks such as protein production, crystallization and X-ray data collection. The structural and functional information obtained in this project is to be placed in the public domain by timely deposition in publicly available databases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
6P50GM062410-06
Application #
7279492
Study Section
Special Emphasis Panel (ZGM1-BT-5 (01))
Program Officer
Norvell, John C
Project Start
2000-09-30
Project End
2009-08-31
Budget Start
2006-06-01
Budget End
2009-08-31
Support Year
6
Fiscal Year
2005
Total Cost
$123,780
Indirect Cost
Name
Los Alamos National Lab
Department
Type
DUNS #
175252894
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Reddy, Bharat G; Moates, Derek B; Kim, Heung-Bok et al. (2014) 1.55?Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 70:414-7
Bursey, Evan H; Kim, Chang-Yub; Yu, Minmin et al. (2006) An automated high-throughput screening method for the identification of high-yield, soluble protein variants using cell-free expression and systematic truncation. J Struct Funct Genomics 7:139-47
Wang, Shuishu; Eisenberg, David (2006) Crystal structure of the pantothenate synthetase from Mycobacterium tuberculosis, snapshots of the enzyme in action. Biochemistry 45:1554-61
Mougous, Joseph D; Lee, Dong H; Hubbard, Sarah C et al. (2006) Molecular basis for G protein control of the prokaryotic ATP sulfurylase. Mol Cell 21:109-22
Pedelacq, Jean-Denis; Rho, Beom-Seop; Kim, Chang-Yub et al. (2006) Crystal structure of a putative pyridoxine 5'-phosphate oxidase (Rv2607) from Mycobacterium tuberculosis. Proteins 62:563-9
Azizi, Amedeo A; Gelpi, Ellen; Yang, Jae-Won et al. (2006) Mass spectrometric identification of serine hydrolase OVCA2 in the medulloblastoma cell line DAOY. Cancer Lett 241:235-49
Akey, David; Martins, Alexandra; Aniukwu, Jideofor et al. (2006) Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J Biol Chem 281:13412-23
Xu, Min; Arulandu, Arockiasamy; Struck, Douglas K et al. (2005) Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307:113-7
Kantardjieff, Katherine A; Vasquez, Carolina; Castro, Peter et al. (2005) Structure of pyrR (Rv1379) from Mycobacterium tuberculosis: a persistence gene and protein drug target. Acta Crystallogr D Biol Crystallogr 61:355-64
Card, Graeme L; Peterson, Neil A; Smith, Clyde A et al. (2005) The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis. J Biol Chem 280:13978-86

Showing the most recent 10 out of 38 publications