This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The development of effective medications to treat cocaine addiction will depend on a better understanding of cocaine neuropharmacology. The current project utilized positron emission tomography (PET) neuroimaging techniques in nonhuman primates as a noninvasive approach to investigate cocaine-induced functional changes in central nervous system activity. The major emphasis has been on interactions between selective dopamine transporter (DAT) inhibitors and selective serotonin transporter (SERT) inhibitors on cocaine self-administration. We completed a series of studies to characterize the neuropharmacology of 3,4-methylenedioxymethamphetamine (MDMA), an abused amphetamine-type stimulant. The enantiomers of MDMA appear to have differential effects with (+)MDMA being primarily dopaminergic and (-)MDMA being primarily serotonergic. Interestingly, (+)MDMA was effective in reinstating extinguished amphetamine self-administration as a model of drug relapse. It also induced robust increases in extracellular dopamine, an effect shared by amphetamine and cocaine. In contrast, (-)MDMA was ineffective in reinstatement and in increasing dopamine. However, it was very effective in increasing plasma prolactin levels, an effect that is shared by serotonergic agonists. This may explain the unique pharmacology of MDMA in humans. We made significant progress in the development of fMRI in awake monkeys in order to characterize cocaine- and cue-induced brain activation at a neurocircuitry level. Collectively, the results have important implication concerning the development of substitute agonist pharmacotherapies to treat stimulant abuse.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000165-49
Application #
7958103
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2009-05-01
Project End
2010-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
49
Fiscal Year
2009
Total Cost
$54,800
Indirect Cost
Name
Emory University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Claw, Katrina G; George, Renee D; MacCoss, Michael J et al. (2018) Quantitative evolutionary proteomics of seminal fluid from primates with different mating systems. BMC Genomics 19:488
Adekambi, Toidi; Ibegbu, Chris C; Cagle, Stephanie et al. (2018) High Frequencies of Caspase-3 Expressing Mycobacterium tuberculosis-Specific CD4+ T Cells Are Associated With Active Tuberculosis. Front Immunol 9:1481
Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly et al. (2018) A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov Disord 33:805-814
Georgieva, Maria; Sia, Jonathan Kevin; Bizzell, Erica et al. (2018) Mycobacterium tuberculosis GroEL2 Modulates Dendritic Cell Responses. Infect Immun 86:
Tedesco, Dana; Grakoui, Arash (2018) Environmental peer pressure: CD4+ T cell help in tolerance and transplantation. Liver Transpl 24:89-97
Mavigner, Maud; Habib, Jakob; Deleage, Claire et al. (2018) Simian Immunodeficiency Virus Persistence in Cellular and Anatomic Reservoirs in Antiretroviral Therapy-Suppressed Infant Rhesus Macaques. J Virol 92:
Walker, Lary C (2018) Prion-like mechanisms in Alzheimer disease. Handb Clin Neurol 153:303-319
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Wakeford, Alison G P; Morin, Elyse L; Bramlett, Sara N et al. (2018) A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 9:188-198
Singh, Arun; Jenkins, Meagan A; Burke Jr, Kenneth J et al. (2018) Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep 22:941-952

Showing the most recent 10 out of 912 publications