This proposal is for continued development and enhancement of existing and successful theory and software infrastructure developed at Caltech for the systems biology community, and builds on experience with SBML and engineering softwared. (1) Next-generation, multiscale, deterministic/stochastic simulation software. Computational models in biology are continually growing in complexity and size. Their accurate and effective simulation requires new algorithms and new software. Collaboration between the PI Doyle and Drs. Petzold (UCSB, creator of DASSL) and Dan Gillespie (creator of the stochastic simulation algorithm) have led to the development of combined deterministic/stochastic simulation algorithms that are much more efficient than existing stochastic algorithms, and can automatically determine the appropriate scale for different subsystems of a model. This program will support Dr. Gillespie's continued research and implementation of new algorithms in production-quality open-source software modules that will be made widely available. (2) Extension of SOSTOOLS. Recent Caltech research has developed mathematics for analyzing models, such as """"""""this model cannot explain the data for any set of plausible parameters"""""""" and """"""""this model is robust as parameters are varied."""""""" The theory builds on advances in several areas, including robust control and dynamical systems theory, computational complexity, real semi-algebraic geometry, semidefinite programming, and duality. The result of this work has been a new class of scalable algorithms for model analysis and (in)validation and iterative experimentation for large-scale, stochastic, nonlinear, nonequilibrium, hybrid (containing both continuous and discrete mathematics) networks with multiple time and spatial scales. The recent progress is implemented in SOSTOOLS, an open-source (GPL) MATLAB toolbox. This program will enhance and extend SOSTOOLS to exploit biological specific structure, treat stochastic models to complement simulation, make connections with Savageau's S-system formalism, perform model (in)validation from data, and develop provably correct model reduction for nonlinear biochemical models. (3) Integration of stochastic simulation and SOS analysis. Analysis of complex stochastic biochemical networks will require a blend of simulation and SOS analysis and model reduction, and this program will create an integrated suite of software tools with rigorous theoretical foundations. ? ? ? ?
Showing the most recent 10 out of 17 publications