Many aspects of the innate and adaptive immunity are critically regulated by the microbiota. Microbial cells, their metabolites and nucleic acids engage various immune cells, resulting in pro- or anti-inflammatory signals that differ based on chemical structures, cellular receptors, and physiological context. The microbiota not only influences local immunity, but also has distant effects on systemic immunity. Local microbiota stimulation of innate and adaptive immune cells results in those cells or their products to migrate or traffic through lymphatics or blood, and influence diseases. However, the precise causal pathways linking microbiota components to immune cells and downstream effectors in most cases remain to be defined. Solid organ transplantation has made significant progress over the past 35 years and has become a routine procedure. Cardiac transplantation is a common and successful transplant, with graft survival after one year exceeding 80-90%. Despite advances in all aspects of allografting, the rate of decline of cardiac and other graft function beyond the first year after transplant has not changed in over 20 years. All allografts eventually succumb to chronic vascular, interstitial or epithelial changes. Despite critical improvements in immunosuppressive regimens, immunologic monitoring, and molecular classification of organ pathology, chronic rejection still persists and its primary cause is not understood. Prior work has focused on distal events of fibrosis and inflammation, but not on proximal causes of inflammation and immunity. We previously showed in renal transplantation, large and persistent shifts in the composition and complexity of the gut microbiota as a result of immunosuppression and antibiotics. Such shifts in the microbiota are indicative of all organ transplants, including cardiac transplants. We therefore hypothesized that these changes could critically affect graft outcome. Our current studies dissected the interactions between the enteric microbiota and innate and adaptive immunity, in clinically-relevant cardiac transplantation models of acute and chronic rejection. Our results show that both pro-inflammatory and anti-inflammatory microbiota populations, as well as single bacteria, can be defined by their effects on the long-term outcome of the grafts. Mechanistic explorations suggest a differential stimulation of myeloid cells (i.e. macrophages and DC), resulting in changes in LN structure that influence allogeneic immunity. Thus, we hypothesize that the microbiota directly regulates innate immunity, which in turn regulates systemic inflammation and adaptive immunity, thereby determining the occurrence and progression of graft fibrosis, inflammation and graft survival. To investigate this hypothesis, we will take advantage of our expertise in microbiota analysis and in molecular and cellular transplant immunology. The definition of pro-inflammatory and anti-inflammatory microbiota and strains may provide a precise platform to define the most important upstream influences that initiate organ inflammation and scarring and could serve as potent diagnostic markers for allograft management.
The most important goal in transplantation is to achieve prolonged allograft survival, and eventually alloantigen specific tolerance. Yet, the occurrence of allograft vascular inflammation and fibrosis has not changed in over two decades. In preliminary studies we characterized gut microbiotas and identified single bacterial species that influence myeloid cell responses, lymph node structure, and the outcomes of murine cardiac allografts. The proposed work will use this murine model of cardiac allografting to further identify the functional mechanisms by which pro- inflammatory and anti-inflammatory microbiota alter adaptive immunity and ultimately allograft survival.