Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS022230-09
Application #
2264438
Study Section
Neurology A Study Section (NEUA)
Project Start
1986-01-01
Project End
1997-04-30
Budget Start
1996-05-01
Budget End
1997-04-30
Support Year
9
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Sir Mortimer B. Davis Jewish Gen Hosp
Department
Type
DUNS #
City
Montreal
State
PQ
Country
Canada
Zip Code
H3 1-E2
Chen, Z P; Yarosh, D; Garcia, Y et al. (1999) Relationship between O6-methylguanine-DNA methyltransferase levels and clinical response induced by chloroethylnitrosourea therapy in glioma patients. Can J Neurol Sci 26:104-9
Chen, Z P; McQuillan, A; Mohr, G et al. (1998) Excision repair cross-complementing rodent repair deficiency gene 2 expression and chloroethylnitrosourea resistance in human glioma cell lines. Neurosurgery 42:1112-9
Chen, Z P; Malapetsa, A; Mohr, G et al. (1997) Quantitation of ERCC-2 gene expression in human tumor cell lines by reverse transcription-polymerase chain reaction in comparison to northern blot analysis. Anal Biochem 244:50-4
Chen, Z P; Malapetsa, A; McQuillan, A et al. (1997) Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chloroethylnitrosourea resistance in human tumor cell lines. Mol Pharmacol 52:815-20
Panasci, L C; Marcantonio, D; Noe, A J (1996) SarCNU (2-chloroethyl-3-sarcosinamide-1-nitrosourea): a novel analogue of chloroethylnitrosourea that is transported by the catecholamine uptake2 carrier, which mediates increased cytotoxicity. Cancer Chemother Pharmacol 37:505-8
Noe, A J; Marcantonio, D; Barton, J et al. (1996) Characterization of the catecholamine extraneuronal uptake2 carrier in human glioma cell lines SK-MG-1 and SKI-1 in relation to (2-chloroethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) selective cytotoxicity. Biochem Pharmacol 51:1639-48
Malapetsa, A; Noe, A J; Poirier, G G et al. (1996) Identification of a 116 kDa protein able to bind 1,3-bis(2-chloroethyl)-1-nitrosourea-damaged DNA as poly(ADP-ribose) polymerase. Mutat Res 362:41-50
Chen, Z P; Malapetsa, A; Marcantonio, D et al. (1996) Correlation of chloroethylnitrosourea resistance with ERCC-2 expression in human tumor cell lines as determined by quantitative competitive polymerase chain reaction. Cancer Res 56:2475-8
Bramson, J; O'Connor, T; Panasci, L (1995) Effect of alkyl-N-purine DNA glycosylase overexpression on cellular resistance to bifunctional alkylating agents. Biochem Pharmacol 50:39-44
Noe, A J; Malapetsa, A; Panasci, L C (1994) Altered cytotoxicity of (2-chloroethyl)-3-sarcosinamide-1-nitrosourea in human glioma cell lines SK-MG-1 and SKI-1 correlates with differential transport kinetics. Cancer Res 54:1491-6

Showing the most recent 10 out of 35 publications