Peripheral neuropathy is the most common neurological complication associated with HIV-1 infection, affecting over one-third of HIV-infected individuals with AIDS. In addition, studies have found a high prevalence of HIV sensory neuropathy in HIV-infected patients receiving highly active antiretroviral therapy. Although HIV-induced damage to the peripheral nervous system is a frequent and debilitating consequence of infection, its pathogenesis is incompletely understood. To study this disease, we established an SIV/macaque model in which over 90 percent of animals develop PNS changes closely resembling those seen in HIV-infected individuals with distal sensory neuropathy, including inflammation of the dorsal root ganglia with abundant replication of SIV in macrophages and neuronal loss, sural nerve inflammation, and reduction in the number of epidermal nerve fibers in the feet. This constitutes the first primate model of HIV-induced peripheral neuropathy. Our goal is to use this model to dissect the pathogenesis and the underlying molecular basis of HIV-induced PNS disease. Our hypothesis is that HIV first replicates in macrophages within the DRG in the PNS, inducing a cascade of viral and macrophage-produced neurotoxic products, which activate p38 MAPK signaling pathways in somatosensory neurons that trigger sodium channel dysregulation. To address this hypothesis, we have proposed three Aims:
Aim 1 is to determine whether SIV-induced PNS disease is initiated by replication of gangliotropic viruses that trigger production of neurotoxic viral and macrophage gene products in the DRG of SIV- infected macaques and to determine whether neurovirulent viruses remain latent in the DRG when no active virus replication is detected in DRG.
Aim 2 is to determine the order in which components of the pain pathway, including DRG, sensory fibers in peripheral nerve, and epidermal nerve fibers are damaged in DSP.
Aim 3 is to determine whether a) SIV-induced PNS disease is associated with altered conductive properties of unmyelinated C fibers and alterations in expression levels and distribution of sodium channels in DRG neurons, and b) to determine whether active replication of SIV in DRG macrophages induces activation of p38 in DRG neurons thereby modulating the expression and location of sodium channels in DRG neurons. The goal of these comprehensive, integrated studies of HIV sensory neuropathy in our novel SIV primate model is to advance the understanding of HIV-SN pathogenesis to foster new therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS055651-04
Application #
7622090
Study Section
NeuroAIDS and other End-Organ Diseases Study Section (NAED)
Program Officer
Wong, May
Project Start
2006-07-13
Project End
2011-05-31
Budget Start
2009-06-01
Budget End
2011-05-31
Support Year
4
Fiscal Year
2009
Total Cost
$621,536
Indirect Cost
Name
Johns Hopkins University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Beck, Sarah E; Queen, Suzanne E; Metcalf Pate, Kelly A et al. (2018) An SIV/macaque model targeted to study HIV-associated neurocognitive disorders. J Neurovirol 24:204-212
Mangus, Lisa M; Dorsey, Jamie L; Weinberg, Rachel L et al. (2016) Tracking Epidermal Nerve Fiber Changes in Asian Macaques: Tools and Techniques for Quantitative Assessment. Toxicol Pathol 44:904-12
Mangus, Lisa M; Dorsey, Jamie L; Laast, Victoria A et al. (2015) Neuroinflammation and virus replication in the spinal cord of simian immunodeficiency virus-infected macaques. J Neuropathol Exp Neurol 74:38-47
Dorsey, Jamie L; Mangus, Lisa M; Hauer, Peter et al. (2015) Persistent Peripheral Nervous System Damage in Simian Immunodeficiency Virus-Infected Macaques Receiving Antiretroviral Therapy. J Neuropathol Exp Neurol 74:1053-60
Mangus, Lisa M; Dorsey, Jamie L; Laast, Victoria A et al. (2014) Unraveling the pathogenesis of HIV peripheral neuropathy: insights from a simian immunodeficiency virus macaque model. ILAR J 54:296-303
Ebenezer, Gigi J; McArthur, Justin C; Polydefkis, Michael et al. (2012) SIV-induced impairment of neurovascular repair: a potential role for VEGF. J Neurovirol 18:222-30
Lehmann, Helmar C; Chen, Weiran; Borzan, Jasenka et al. (2011) Mitochondrial dysfunction in distal axons contributes to human immunodeficiency virus sensory neuropathy. Ann Neurol 69:100-10
Ebenezer, Gigi J; Laast, Victoria A; Dearman, Brandon et al. (2009) Altered cutaneous nerve regeneration in a simian immunodeficiency virus / macaque intracutaneous axotomy model. J Comp Neurol 514:272-83
Witwer, Kenneth W; Gama, Lucio; Li, Ming et al. (2009) Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 4:e8129