The Gardner Laboratory uses a combination experimental and computational approach to dissect molecular mechanisms for how microtubule lengths are regulated inside of cells, and for how force signaling acts to ensure proper chromosome segregation during mitosis. We use biophysical computational modeling to better integrate and understand our experimental observations, make new experimental predictions, and to test whether our proposed cellular mechanisms are physically reasonable. Overall, we are a cellular biophysics laboratory that combines cell biology tools with biophysical methods to shed new light on the regulation of microtubule dynamics, and to dissect forces in mitosis. Achieving the goals described in this application will provide mechanistic insights into how molecular-scale changes in microtubule structure could regulate cellular-scale changes in microtubule-associated protein localization and binding, as well as how changes in chromosome structure and stiffness could affect cellular-level tension signaling during mitosis. In particular, this application will advance our understanding of: 1) how microtubule structure can alter protein binding, and vice versa, 2) how the cell reads out and responds to nuanced tension signaling during mitosis, and 3) how a disease process such as cancer may alter tension signaling during mitosis, and the specific impact of aneuploidy, which is a hallmark of cancer cells, on centromere stiffness and tension signaling during mitosis.

Public Health Relevance

Mitosis is the process by which duplicated sister chromosomes are evenly distributed to identical daughter cells, and in cancer cells, improper chromosome segregation during mitosis (e.g., such that chromosomes are unevenly distributed between daughter cells) is widely observed, and has been linked to poor prognosis, including decreased overall survival time and fewer treatment free years. In this study, we will make use of physical principles and advanced microscopy to evaluate chromosome stiffness and tension inside of living cells, and to dissect the role of microtubule structure in the targeting of microtubule-associated proteins. The results generated from our studies will be applicable both towards better understanding the fundamental biophysics of cell division, and also towards providing mechanistic information to shed light on current cancer therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
1R35GM126974-01
Application #
9485475
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Deatherage, James F
Project Start
2018-06-01
Project End
2023-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Genetics
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455