Nanomaterial Inhalational Exposure and Potential Health Effects Engineered nanomaterials (ENMs) are an emerging category of materials that are finding increasing use in the areas of imaging, electronics and therapeutics;however, they are already part of a widening number of products that are commonly used such as computer chips, cosmetics, clothing and dietary supplements. Even though these ENMs may prove to be beneficial, there have been concerns raised regarding their potential health risks. Although these particles have been studied for the last few decades, only recently has the potential toxicity of ENMs been researched in a serious way. This issue of toxicity has been recently highlighted by the case report of 7 female factory workers exposed to nanoparticles during their work for 5-13 months who developed lung damage with pulmonary fibrosis and inflammation^, although there may have been other factors involved in these unfortunate cases. People that may be exposed to ENMs include workers, consumers and the general public through a number of ways that include by skin or by the gastrointestinal route or through the eyes, but the inhaled route remains potentially the most important one. The inhaled route is also an important one for a number of applicafions for ENMs including imaging agents, gene therapy and therapeufic drug delivery to infected or tumour sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19ES019536-01
Application #
8068438
Study Section
Special Emphasis Panel (ZES1-SET-V (03))
Project Start
2010-09-28
Project End
2015-04-30
Budget Start
2010-09-28
Budget End
2011-04-30
Support Year
1
Fiscal Year
2010
Total Cost
$230,439
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Botelho, Danielle; Leo, Bey F; Massa, Christopher et al. (2018) Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model. Front Pharmacol 9:213
Chung, Kian Fan; Seiffert, Joanna; Chen, Shu et al. (2017) Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats. ACS Nano 11:2652-2664
Seiffert, Joanna; Buckley, Alison; Leo, Bey et al. (2016) Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats. Respir Res 17:85
Ruenraroengsak, Pakatip; Chen, Shu; Hu, Sheng et al. (2016) Translocation of Functionalized Multi-Walled Carbon Nanotubes across Human Pulmonary Alveolar Epithelium: Dominant Role of Epithelial Type 1 Cells. ACS Nano 10:5070-85
Chen, S; Goode, A E; Skepper, J N et al. (2016) Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. J Microsc 261:157-66
Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B et al. (2016) Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity. Nanotoxicology 10:118-27
Govada, Lata; Leese, Hannah S; Saridakis, Emmanuel et al. (2016) Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals. Sci Rep 6:20053
Theodorou, Ioannis G; Ruenraroengsak, Pakatip; Gow, Andrew et al. (2016) Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells. Nanotoxicology 10:1351-62
Seiffert, Joanna; Hussain, Farhana; Wiegman, Coen et al. (2015) Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain. PLoS One 10:e0119726
Sarkar, Srijata; Leo, Bey Fen; Carranza, Claudia et al. (2015) Modulation of Human Macrophage Responses to Mycobacterium tuberculosis by Silver Nanoparticles of Different Size and Surface Modification. PLoS One 10:e0143077

Showing the most recent 10 out of 29 publications