Research in our laboratory is focused on the epigenetic control of higher-order chromatin assembly. The dynamic regulation of higher-order chromosome structure governs diverse cellular processes ranging from stable inheritance of gene expression patterns to other aspects of global chromosome structure essential for preserving genomic integrity. Our earlier studies revealed sequence of molecular events leading to the assembly of heterochromatic structures in the fission yeast Schizosaccharomyces pombe. We found that covalent modifications of histone tails by deacetylase and methyltransferase activities act in concert to establish the """"""""histone code"""""""" essential for assembly of heterochromatic structures. Moreover, we showed that distinct site-specific histone H3 methylation patterns dictate the organization of chromosomes into discrete structural and functional domains. Histone H3 methylated at lysine 9 is strictly localized to silent heterochromatic regions whereas H3 methylated at lysine 4, only a few amino acids away, is specific to the surrounding active euchromatic regions. We have continued to focus on the role of histone modifications and the factors that recognize specific histone modifications patterns (such as a chromodomain protein Swi6 that specifically binds histone H3 methylated at lysine 9) in the assembly of higher-order chromatin structures and have made significant progress in understanding the mechanism of higher-order chromatin assembly. More importantly, we provided evidence showing that RNA interference (RNAi), whereby double-stranded RNAs silence cognate genes, plays a critical role in targeting of heterochromatin complexes to specific locations in the genome. The link between RNAi and heterochromatin assembly is conserved in higher eukaryotes including mammals and has broad implications for human biology and disease including cancer.
Showing the most recent 10 out of 14 publications