Although the field of genomics has recently sequenced thousands of genes from multiple species, it is much slower at providing information on assigning functions to these genes. Proteins are generally the effector molecules that ascribe roles to genes, and most of the functions of proteins arise through their three-dimensional structures and their interactions with other molecules. Conventional genetic and structural biology techniques have, respectively, been the most powerful avenues for determining the organization of cell signaling networks and the molecular details of protein structure and protein/protein interactions. Understanding protein structure and the protein:protein interactions of the cell at a basic level (i.e. identification of the molecules involved, determination of their molecular architecture, and elucidation of how these molecules interact with one another) is imperative for understanding how the disruption of a single element can result in human disease. X-ray crystallography and nuclear magnetic resonance spectroscopy are the current methods of choice for obtaining high resolution structural information. Mass spectrometry (MS) is an emerging technique that is showing tremendous potential for both identification of protein complexes and elucidation of protein structure, in particular for proteins that are not amenable to classical structural techniques. The advantages of MS sensitivity, low sample consumption, and the ability to analyze inhomogeneous mixtures can overcome the obstacles that hamper other structural methods. MS was actually developed about 100 years ago, but its utility in biological research is just now being realized. Using MS, we can probe the structure of a protein with chemical reagents and then assess inter-residue distances and solvent accessibility. These data can aid in the determination of the protein structure and, hence, as to how the protein works. Moreover, MS can also be employed to simultaneously determine what other proteins a particular protein of interest interacts with and how these interactions are formed. Protein:protein and protein:DNA interactions are often at the center of biological processes, both beneficial and harmful. The primary goal of this project is to determine structural features of protein interactions that are critical in biologically functional or in pathological processes. As examples, we are currently studying DNA repair enzyme interactions with DNA, the interaction surfaces in DNA mismatch repair enzymes, and structural transformations of proteins concomitant with phosphorylation that are involved in carcinogenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES050127-11
Application #
6838363
Study Section
(LSB)
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2003
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Schorzman, Allison N; Perera, Lalith; Cutalo-Patterson, Jenny M et al. (2011) Modeling of the DNA-binding site of yeast Pms1 by mass spectrometry. DNA Repair (Amst) 10:454-65
Dhungana, Suraj; Fessler, Michael B; Tomer, Kenneth B (2009) Epitope mapping by differential chemical modification of antigens. Methods Mol Biol 524:119-34
Perdivara, Irina; Deterding, Leesa; Moise, Adrian et al. (2008) Determination of primary structure and microheterogeneity of a beta-amyloid plaque-specific antibody using high-performance LC-tandem mass spectrometry. Anal Bioanal Chem 391:325-36
Iacob, Roxana E; Keck, Zhenyong; Olson, Oakley et al. (2008) Structural elucidation of critical residues involved in binding of human monoclonal antibodies to hepatitis C virus E2 envelope glycoprotein. Biochim Biophys Acta 1784:530-42
Sharp, Joshua S; Tomer, Kenneth B (2007) Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping. Biophys J 92:1682-92
Prasad, Rajendra; Liu, Yuan; Deterding, Leesa J et al. (2007) HMGB1 is a cofactor in mammalian base excision repair. Mol Cell 27:829-41
Venkatesh, Sanjay; Tomer, Kenneth B; Sharp, Joshua S (2007) Rapid identification of oxidation-induced conformational changes by kinetic analysis. Rapid Commun Mass Spectrom 21:3927-36
Clark, Alan B; Deterding, Leesa; Tomer, Kenneth B et al. (2007) Multiple functions for the N-terminal region of Msh6. Nucleic Acids Res 35:4114-23
Robinette, David; Neamati, Nouri; Tomer, Kenneth B et al. (2006) Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics. Expert Rev Proteomics 3:399-408
Sharp, Joshua S; Sullivan, Daniel M; Cavanagh, John et al. (2006) Measurement of multisite oxidation kinetics reveals an active site conformational change in Spo0F as a result of protein oxidation. Biochemistry 45:6260-6

Showing the most recent 10 out of 25 publications