Flow Cytometric immunophenotyping is a sensitive technique for analysis of benign and malignant tumors. We are studying the refinement of this technique and its application to diagnosis and measurement of prognostic markers in different systems. We are studying the flow cytometric immunophenotype of CLL and correlating the expression of specific antigens with morphology, cytogenetics and clinical course. Data from this study may provide prognostic markers for this disease. We have refined methods for flow cytometric monitoring of patient specimens for apoptosis induced by chemotherapy and have been able to detect apoptosis in specific cell populations. This has allowed us to demonstrate different sensitivities of specific cell lineages to chemotherapeutic agents. We have initiated a study of clonal cytotoxic T-cell populations that arise in patients with B-cell neoplasia to determine prognostic importance as well as resulting difficulties in minimal residual disease detection. As a result, we have found that clonal cytotoxic T-cell proliferations occur with surprising frequency in hairy cell leukemia. The laboratory has an ongoing interest in detection of minimal and residual lymphoma. We are using multiparametric approaches to improve the sensitivity of detection of monoclonal B-cell populations. By targeting abnormal patterns of antigen expression (eg CD10, CD5, CD23, FMC7, or abnormal intensity of antigen expression) by neoplastic B-cells in light chain detection, we are attempting to detect very small numbers of neoplastic B-cells among admixed polyclonal B-cells. The laboratory is studying specific Flow Cytometric markers of various lymphoma sub-groups (e.g. mantle cell lymphoma) to improve diagnostic accuracy. The Flow Cytometry Laboratory is developing methods for Flow Cytometric analysis of comparitive genomic hybridization to detect gene expression in the research and clinical setting. - Fluorescent probes, leukemia, lymphoma,

National Institute of Health (NIH)
National Cancer Institute (NCI)
Intramural Research (Z01)
Project #
Application #
Study Section
Special Emphasis Panel (LP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Cancer Institute Division of Clinical Sciences
United States
Zip Code
Stetler-Stevenson, M; Yuan, C M (2009) Myelodysplastic syndromes: the role of flow cytometry in diagnosis and prognosis. Int J Lab Hematol 31:479-83
O'Mahony, Deirdre; Morris, John C; Stetler-Stevenson, Maryalice et al. (2009) EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res 15:2514-22
Arons, Evgeny; Sorbara, Lynn; Raffeld, Mark et al. (2006) Characterization of T-cell repertoire in hairy cell leukemia patients before and after recombinant immunotoxin BL22 therapy. Cancer Immunol Immunother 55:1100-10
Schinstine, Malcolm; Filie, Armando C; Wilson, Wyndham et al. (2006) Detection of malignant hematopoietic cells in cerebral spinal fluid previously diagnosed as atypical or suspicious. Cancer 108:157-62
Arons, Evgeny; Margulies, Inger; Sorbara, Lynn et al. (2006) Minimal residual disease in hairy cell leukemia patients assessed by clone-specific polymerase chain reaction. Clin Cancer Res 12:2804-11
Fogarty, Patrick F; Stetler-Stevenson, Maryalice; Pereira, Aloysius et al. (2005) Large granular lymphocytic proliferation-associated cyclic thrombocytopenia. Am J Hematol 79:334-6
Lamb Jr, Lawrence S; Neuberg, Ronnie; Welsh, Jeff et al. (2005) T-cell lymphoblastic leukemia/lymphoma syndrome with eosinophilia and acute myeloid leukemia. Cytometry B Clin Cytom 65:37-41
Ahmad, Ejaz; Kingma, Douglas W; Jaffe, Elaine S et al. (2005) Flow cytometric immunophenotypic profiles of mature gamma delta T-cell malignancies involving peripheral blood and bone marrow. Cytometry B Clin Cytom 67:6-12
Hegde, Upendra; Filie, Armando; Little, Richard F et al. (2005) High incidence of occult leptomeningeal disease detected by flow cytometry in newly diagnosed aggressive B-cell lymphomas at risk for central nervous system involvement: the role of flow cytometry versus cytology. Blood 105:496-502
Marti, Gerald E; Vogt Jr, Robert F; Stetler-Stevenson, Maryalice (2003) Clinical quantitative flow cytometry: ""Identifying the optimal methods for clinical quantitative flow cytometry"". Cytometry B Clin Cytom 55:59

Showing the most recent 10 out of 13 publications