?-Thalassemia and sickle cell disease (SCD) are severe inherited anemias that result in defective ?-globin expression. A common feature shared between both disorders is that the diseases can be mitigated by the production of fetal hemoglobin (HbF). Current treatments for both disorders are mainly supportive and focus on alleviating disease complications. However, management of these ?-hemoglobinopathies is expensive, restrictive, lifelong, and associated with significant side effects. Currently, allogeneic hematopoietic stem cell therapy is the only curative treatment for ?-hemoglobinopathies. However, finding human leukocyte antigen (HLA)-matched donors is highly challenging. Gene editing approaches that alter the expression of HbF should improve the health and quality of life of individuals with ?-hemoglobinopathies. The goal of this project is to develop efficient, accurate, and safe CRISPR gene editing approaches as a universal treatment for ?-hemoglobinopathies. Typically, a nuclease (SpyCas9) and guide RNA (gRNA) target a specific region (+58 enhancer of BCL11A) and creates a double-stranded break. Small insertions or deletions (InDels) are created when imprecise repair of the DNA break occurs, resulting in inactivation of the target gene or functional element. Current therapeutic editing approaches for ?-hemoglobinopathies at the BCL11A locus focus on the mutagenesis of a single GATA1 recognition sequence within the +58 enhancer in CD34+ hematopoietic stem and progenitor cells (HSPCs), limiting the scope of their potential impact. This project will harness our recently developed Cas9-Cas9 fusion chimera, which is able to produce segmental deletions with defined junctions (precise deletions) at a higher efficiency than standard Cas9 nucleases. Furthermore, Cas9-Cas9 fusions are able to effectively target suboptimal PAM sequences, and thus these nucleases have a broader targeting range than standard SpyCas9. These properties make Cas9- Cas9 fusions ideal for the deletion of therapeutically relevant regulatory elements, such as the +58 enhancer of BCL11A. Our preliminary studies show that ribonucleoprotein (RNP) complexes of these Cas9-Cas9 fusions targeting this locus are functional in CD34+ HSPCs and result in robust induction of HbF.
In Aim 1, I will define deletion products within the +58 enhancer that facilitate the maximum induction of HbF in erythroid model systems and optimize the Cas9-Cas9 fusions to efficiently and specifically produce these precise deletions with minimal collateral damage to the genome.
In Aim 2, optimized Cas9-Cas9 fusion protein-sgRNA complexes will be delivered into CD34+ HSPCs and HbF induction levels will be quantified in erythroid progeny. Treated CD34+ cells will be engrafted into immunodeficient mice to measure engraftment potential and persistence of editing in long-term hematopoietic stem cells (LT-HSCs). The genome-editing tools generated from the proposed work will provide a path to improved autologous HSC therapies that will impact the lives of individuals affected by ?-hemoglobinopathies.

Public Health Relevance

?-hemoglobinopathies affect the lives of millions of individuals, worldwide. This study aims to develop a gene editing approach to induce a condition that has been known to alleviate the clinical severity of ?- hemoglobinopathies. Reagents generated from the competition of this work will establish a foundation for a universal treatment to help those affected by ?-hemoglobinopathies, and provide a blueprint for similar approaches to treat other genetic disorders.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
1F31HL147482-01
Application #
9761025
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Chang, Henry
Project Start
2019-05-09
Project End
2021-05-08
Budget Start
2019-05-09
Budget End
2020-05-08
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655