Steroid hormone receptors (SR) are hormone-regulated transcription factors belonging to the nuclear receptor family. Upon binding hormone, SR bind to specific enhancer or silencer elements on DNA, recruit many coregulators which remodel chromatin, regulate assembly of the transcription complex, and regulate transcription of the neighboring promoters. Defining the specific molecular functions of the many coregulators and how their recruitment and actions are coordinated are key to understanding how transcription is regulated. Among the many coregulators identified, three complexes are known to have critical roles: the steroid receptor coactivators (SRC) bind directly to SRs and anchor histone modifying enzymes and other coregulators to the promoter;the SWI/SNF complex remodels chromatin in an ATP-dependent manner;and the Mediator complex recruits RNA polymerase II. We have recently discovered two SRC-associated coregulators which are required for recruitment of the SWI/SNF and Mediator complexes to steroid hormone-regulated promoters. With this knowledge we can now progress from coactivator discovery and characterization, which has occupied us and the field for the past 15 years, to the definition of what each coregulator contributes to the process of hormone- stimulated transcription activation and how the recruitment and activities of many of the coregulators are coordinated. This will be done by using RNA interference to systematically deplete the endogenous levels of selected coregulators, followed by chromatin immunoprecipitation assays to examine the effects of coregulator depletion on the stepwise modification of histones and assembly of the transcription complex, which occur on endogenous SR target genes in response to the hormone. This study will go beyond the simple cataloguing of promoter occupancy by defining the stepwise requirements for chromatin modifications and transcription factor assembly and by establishing the functional relationships among the various coregulators, histone modifications, and transcription complex components. We will also define the functions of specific coregulator domains by testing the effect of specific mutations (which disrupt coregulator interactions or functions) on the hormone-dependent regulation of endogenous target genes of SRs. To complement these mechanistic studies, we will also define the physiological gene programs controlled by individual coregulators. We and others have shown that individual coregulators are required for the hormonal regulation of some, but not all, of the target genes of a particular SR in a particular cell line. We will use microarray and bioinformatics analyses to define the subset of SR target genes that require individual coregulators. Then we will examine the specific cellular properties or programs (such as growth and migration) controlled by coregulator-specific subsets of steroid hormone regulated genes. This comprehensive analysis will provide the information necessary to assess whether coregulators are reasonable targets for intervention in breast and prostate cancer and in other steroid hormone-related diseases.

Public Health Relevance

The proposed project will generate a new level of understanding for the molecular mechanism of regulation of genes and cellular activities by steroid hormones. Steroid hormones control normal development and play important roles in diseases such as cancer, diabetes, and autoimmune diseases. The new basic knowledge obtained in this project will identify new potential targets for therapeutic intervention in these diseases.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Margolis, Ronald N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Schools of Medicine
Los Angeles
United States
Zip Code
Jin, Ming Li; Kim, Young Woong; Jin, Hong Lan et al. (2018) Aberrant expression of SETD1A promotes survival and migration of estrogen receptor ?-positive breast cancer cells. Int J Cancer 143:2871-2883
Poulard, Coralie; Baulu, Estelle; Lee, Brian H et al. (2018) Increasing G9a automethylation sensitizes B acute lymphoblastic leukemia cells to glucocorticoid-induced death. Cell Death Dis 9:1038
Lee, Brian H; Stallcup, Michael R (2018) Different chromatin and DNA sequence characteristics define glucocorticoid receptor binding sites that are blocked or not blocked by coregulator Hic-5. PLoS One 13:e0196965
Lee, Brian H; Stallcup, Michael R (2017) Glucocorticoid receptor binding to chromatin is selectively controlled by the coregulator Hic-5 and chromatin remodeling enzymes. J Biol Chem 292:9320-9334
Yu, E J; Kim, S-H; Kim, H J et al. (2016) Positive regulation of ?-catenin-PROX1 signaling axis by DBC1 in colon cancer progression. Oncogene 35:3410-8
Chodankar, Rajas; Wu, Dai-Ying; Gerke, Daniel S et al. (2015) Selective coregulator function and restriction of steroid receptor chromatin occupancy by Hic-5. Mol Endocrinol 29:716-29
Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R et al. (2015) Identifying differential transcription factor binding in ChIP-seq. Front Genet 6:169
Ou, Chen-Yin; Chen, Tzu-Chieh; Lee, Joyce V et al. (2014) Coregulator cell cycle and apoptosis regulator 1 (CCAR1) positively regulates adipocyte differentiation through the glucocorticoid signaling pathway. J Biol Chem 289:17078-86
Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas et al. (2014) Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators. Nucl Recept Signal 12:e002
Schiller, Benjamin J; Chodankar, Rajas; Watson, Lisa C et al. (2014) Glucocorticoid receptor binds half sites as a monomer and regulates specific target genes. Genome Biol 15:418

Showing the most recent 10 out of 64 publications